Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny, spontaneous gene mutations may boost autism risk

16.03.2007
Tiny gene mutations, each individually rare, pose more risk for autism than had been previously thought, suggests a study funded in part by the National Institute of Mental Health, a component of the National Institutes of Health.

These spontaneous deletions and duplications of genetic material were found to be ten times more prevalent in sporadic cases of autism spectrum disorders than in healthy control subjects – but only twice as prevalent in autism cases from families with more than one affected member. The results implicate the anomalies as primary, rather than just contributory, causes of the disorder in most cases when they are present, according to the researchers. Although they might share similar symptoms, different cases of autism could thus be traceable to any of 100 or more genes, alone or in combination.

Drs. Jonathan Sebat, Michael Wigler, Cold Spring Harbor Laboratory (CSHL), and 30 colleagues from several institutions, report on their discovery online, March 16, 2007 in Science Express.

"These structural variations are emerging as a different kind of genetic risk for autism than the more common sequence changes in letters of the genetic code that we’ve been looking for," explained NIMH director Thomas Insel, M.D. "The best evidence yet that such deletions and duplications are linked to the disorder, these findings certainly complicate the search for genes contributing to autism. These are rare changes, dispersed across the genome, and they tell us that autism may be the final common path for many different genetic abnormalities."

... more about:
»Autism »Genetic »Mutation »spontaneous

"Our results show conclusively that these tiny glitches are frequent in autism, occurring in at least ten percent of cases, and primarily in the sporadic form of the disease, which accounts for 90 percent of affected individuals," added Sebat. "Understanding such sporadic autism will require different genetic approaches and stepped-up recruitment of families in which only one individual has the disease."

Sebat and colleagues used new high resolution array technology to detect mutations that were present in a child but not in either parent. They screened genetic material from 264 families drawn, in part, from the Autism Genetic Resource Exchange (AGRE) and the NIMH Center for Collaborative Genetic Studies of Mental Disorders.

They found the spontaneous mutations in 14 of 195 people with autism spectrum disorders compared to two of 196 unaffected individuals. Among the 14 autism patients with mutations, 12 were the only affected members of their family, while two were in families with other affected individuals.

Since the rate of mutations was much lower in families with more than one affected member, the researchers propose that "two different genetic mechanisms contribute to risk: spontaneous mutation and inheritance, with the latter being more frequent in families that have multiple affected children."

The two mutations detected in 196 healthy controls were duplications, while 12 of those in people with autism were deletions of genetic material. Relatively more females had the mutations, suggesting that the anomalies may contribute to disease more equally across the sexes than other causes of autism. Boys with autism outnumber girls 4 to 1.

Since each mutation is individually rare – few were seen more than once – the results suggest that many different sites in the genome likely contribute to autism.

"Failure to develop social skills and repetitive and obsessive behavior may in fact be the consequence of a reaction to many different cognitive impairments," note the researchers.

The new study is part of a growing body of NIH-funded research on autism genetics. For example, researchers last fall reported discovery of a gene version linked to autism and how it likely works at the molecular level to increase risk. The new study was also supported by the Simons Foundation, Autism Speaks, Cure Autism Now, Southwestern Autism Research and Resource Center, NAAR, Tampere University Hospital Medical Fund.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: Autism Genetic Mutation spontaneous

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>