Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on fructose-sweetened beverages and hepatic metabolism

16.03.2007
According to figures published by the World Health Organitzation (WHO), in the year 2015 some 2.3 bn adults will be overweight and more than 700 million will suffer from obesity, a pathology which is increasingly being seen in children.

In addition, for some time now the high incidence of obesity in developed countries has coincided with an increase in the consumption of beverages sweetened with fructose, a powerful sweetener. A team from the University of Barcelona (UB) has recently published a study in the journal Hepatology which provides clues to the molecular mechanism through which the fructose in beverages may alter lipid energy metabolism and cause fatty liver and metabolic syndrome.

The study was led by Dr Juan Carlos Laguna of the Department of Pharmacology and Therapeutic Chemistry at the Faculty of Pharmacy, who is also the director of the research group “Nuclear receptors regulating energy metabolism as pharmacological targets”, with the participation of Núria Roglans, Laia Vilà, Mireia Farré, Marta Alegret, Rosa Mª Sánchez and Manuel Vázquez-Carrera.

This preclinical study published in Hepatology was carried out with laboratory rats receiving fructose- or glucose-sweetened liquid intake. No solid food was given. “The fructose in fruit has nothing to do with this study,” stresses Professor Laguna. “Fruit is healthy and its consumption is strongly recommended. Our study focuses on liquid fructose intake as an addition to the ordinary diet.”

Fructose is mainly metabolized in the liver, the target organ of the metabolic alterations caused by the consumption of this sugar. In this study, rats receiving fructose-containing beverages presented a pathology similar to metabolic syndrome, which in the short term causes lipid accumulation (hypertriglyceridemia) and fatty liver, and at later stages hypertension, resistance to insulin, diabetes and obesity.

The fructose used to sweeten beverages alters the lipid metabolism in the liver and, according to the authors, represents a calorie overload to which the body’s metabolism is unable to adapt. Specifically, fructose increases fat synthesis in the liver and reduces its degradation through action on a specific nuclear receptor (PPARa), which controls fatty acid ß-oxidation. “The most novel finding,” says Laguna, “is that this molecular mechanism is related to an impairment in the leptin signal. Leptin is a hormone that plays a key role in the body’s energy control; among its peripheral actions, it accelerates fat oxidation in the liver and reduces its synthesis.”

The study shows that rats receiving beverages with fructose have an excess of leptin in blood. Curiously, though, the liver does not show the effects that one would expect in the presence of high levels of this hormone. It seems that the deficit in the degradation of the fatty acids in the liver may be related to the leptin resistance, which affects a transcription factor (Stat-3) involved in the signalling pathway of leptin in the liver and the hypothalamus. Nor were significant weight differences found between the rats drinking liquids with glucose or fructose, “possibly because this was a short-term experiment and there was no time to detect such changes,” notes Professor Laguna.

Poorly balanced diets and the lack of physical exercise are key factors in the increase of obesity and other metabolic diseases in modern societies. In epidemiological studies in humans, the effect of the intake of fructose-sweetened beverages seems to be more intense in women. Professor Laguna’s team intends to continue research on a variety of fronts: the study of the difference in response between sexes; the study of the molecular mechanisms of leptin resistance in the liver in rat models; experimental studies with hepatocyte cell cultures, and, further into the future, pilot studies of a fructose-rich diet in humans to find possible markers of metabolic alterations in blood cells.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

Further reports about: Fructose Laguna Leptin beverages liver metabolic metabolism molecular mechanism

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>