Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on fructose-sweetened beverages and hepatic metabolism

16.03.2007
According to figures published by the World Health Organitzation (WHO), in the year 2015 some 2.3 bn adults will be overweight and more than 700 million will suffer from obesity, a pathology which is increasingly being seen in children.

In addition, for some time now the high incidence of obesity in developed countries has coincided with an increase in the consumption of beverages sweetened with fructose, a powerful sweetener. A team from the University of Barcelona (UB) has recently published a study in the journal Hepatology which provides clues to the molecular mechanism through which the fructose in beverages may alter lipid energy metabolism and cause fatty liver and metabolic syndrome.

The study was led by Dr Juan Carlos Laguna of the Department of Pharmacology and Therapeutic Chemistry at the Faculty of Pharmacy, who is also the director of the research group “Nuclear receptors regulating energy metabolism as pharmacological targets”, with the participation of Núria Roglans, Laia Vilà, Mireia Farré, Marta Alegret, Rosa Mª Sánchez and Manuel Vázquez-Carrera.

This preclinical study published in Hepatology was carried out with laboratory rats receiving fructose- or glucose-sweetened liquid intake. No solid food was given. “The fructose in fruit has nothing to do with this study,” stresses Professor Laguna. “Fruit is healthy and its consumption is strongly recommended. Our study focuses on liquid fructose intake as an addition to the ordinary diet.”

Fructose is mainly metabolized in the liver, the target organ of the metabolic alterations caused by the consumption of this sugar. In this study, rats receiving fructose-containing beverages presented a pathology similar to metabolic syndrome, which in the short term causes lipid accumulation (hypertriglyceridemia) and fatty liver, and at later stages hypertension, resistance to insulin, diabetes and obesity.

The fructose used to sweeten beverages alters the lipid metabolism in the liver and, according to the authors, represents a calorie overload to which the body’s metabolism is unable to adapt. Specifically, fructose increases fat synthesis in the liver and reduces its degradation through action on a specific nuclear receptor (PPARa), which controls fatty acid ß-oxidation. “The most novel finding,” says Laguna, “is that this molecular mechanism is related to an impairment in the leptin signal. Leptin is a hormone that plays a key role in the body’s energy control; among its peripheral actions, it accelerates fat oxidation in the liver and reduces its synthesis.”

The study shows that rats receiving beverages with fructose have an excess of leptin in blood. Curiously, though, the liver does not show the effects that one would expect in the presence of high levels of this hormone. It seems that the deficit in the degradation of the fatty acids in the liver may be related to the leptin resistance, which affects a transcription factor (Stat-3) involved in the signalling pathway of leptin in the liver and the hypothalamus. Nor were significant weight differences found between the rats drinking liquids with glucose or fructose, “possibly because this was a short-term experiment and there was no time to detect such changes,” notes Professor Laguna.

Poorly balanced diets and the lack of physical exercise are key factors in the increase of obesity and other metabolic diseases in modern societies. In epidemiological studies in humans, the effect of the intake of fructose-sweetened beverages seems to be more intense in women. Professor Laguna’s team intends to continue research on a variety of fronts: the study of the difference in response between sexes; the study of the molecular mechanisms of leptin resistance in the liver in rat models; experimental studies with hepatocyte cell cultures, and, further into the future, pilot studies of a fructose-rich diet in humans to find possible markers of metabolic alterations in blood cells.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

Further reports about: Fructose Laguna Leptin beverages liver metabolic metabolism molecular mechanism

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>