Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish scientists discovered a new approach to treat virus-induced lymphomas

16.03.2007
Kaposi’s sarcoma herpesvirus (KSHV) is a human tumor virus and an etiological agent for Kaposi’s sarcoma and primary effusion lymphoma (PEL). PELs are aggressive lymphomas with reported median survival time shorter than six months after diagnosis. Researchers at the University of Helsinki have discovered that activation of the p53 pathway offers a novel effective treatment modality for KSHV-infected lymphomas.

The findings by the research group of Dr. Päivi Ojala (University of Helsinki) in collaboration with the groups of Professor Marikki Laiho (University of Helsinki), Dr. Pirjo Laakkonen (University of Helsinki), and Dr. Jürgen Haas (Max von Pettenkofer Institute, Munich & University of Edinburgh) open new options for exploiting reactivation of p53 as a novel and highly selective treatment modality for this virally-induced lymphoma. The project involves scientists from two Academy of Finland National Centre of Excellence Programs, the Translational Genome-Scale Biology and Cancer Biology.

The study will be published 15.3.2007 in the Journal of Clinical Investigation.

TP53 gene encodes a transcription factor (p53) that plays a central role in protecting cells from tumor development by inducing cell-cycle arrest or apoptosis via a complex signal transduction network referred to as the p53 pathway. TP53 gene is mutated or deleted in 50% of all malignant tumors. A recently discovered strategy for p53 activation targets the interaction of p53 with its negative regulator MDM2. This is based on a potent and selective small-molecule inhibitor of the p53–MDM2 interaction, the Nutlin-3a, originally discovered by Dr Lyubomir T Vassilev (Roche Research Center, Nutley, NJ., USA). Nutlin-3a has been suggested to be a potential treatment option for cancers with wt p53.

... more about:
»KSHV »Nutlin-3a »PEL »apoptosis »lymphoma »p53

PEL is a non-Hodgkin type lymphoma latently infected with KSHV, and it manifests as an effusion malignancy in Kaposi’s sarcoma patients. There are no current therapies effective against the aggressive KSHV-induced PEL. KSHV displays two patterns of infection: latent and lytic phase. During latency, only a restricted set of viral genes is expressed. The KSHV genome encodes several homologues of cellular proteins, which engage cellular signaling pathways, govern cell proliferation and modulate apoptosis.

Majority of the PELs appear to have an intact TP53 gene suggesting that genetic alterations are not selected for during PEL tumorigenesis. The results of this study demonstrate binding of the KSHV latency associated antigen LANA to both p53 and MDM2, and that the MDM2 inhibitor Nutlin-3a disrupts the p53-MDM2-LANA complex and selectively induces massive apoptosis in PEL cells. The cytotoxic effect of Nutlin-3a was specific for the KSHV-infected cells since Nutlin-3a did not induce apoptosis in lymphoblastoid cell lines transformed with another human tumor virus, the Epstein-Barr virus, despite of their wt p53 status.

Moreover, the researchers show that Nutlin-3a has striking anti-tumor activity in vivo in a mouse xenograft model for the PEL. Nutlin-3a treatment resulted in a marked regression of all tumors in the treated animals in two weeks. These results demonstrate that p53 reactivation via Nutlin-3a is an efficient treatment for KSHV-lymphomas in mice and suggest a novel therapeutic strategy for treatment of these fatal virus-induced malignancies also in humans.

This work was supported by grants from the Academy of Finland including also Centres of Excellence in Translational Genome-Scale Biology and Cancer Biology, and additional funds have been obtained from the University of Helsinki, Academy of Finland research program for Systems Biology and Bioinformatics, Finnish Cancer Foundations, Sigrid Juselius Foundation, and from the European Union (FP6 INCA project LSHC-CT-2005-018704).

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: KSHV Nutlin-3a PEL apoptosis lymphoma p53

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>