Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanisms Involved with Tumor Relapse Identified

15.03.2007
Researchers work toward creating a tailored breast cancer vaccine

Researchers at Virginia Commonwealth University's Massey Cancer Center studying the interaction between the immune system and cancer cells have identified interferon gamma as one of the signaling proteins involved with tumor relapse.

The findings may help researchers develop tailored vaccines and other immunotherapeutic strategies to fight a number of cancers. Immunotherapy involves the manipulation of the immune system – by introducing an antibody or lymphocytes, or immunization with a tumor vaccine – to recognize and eradicate tumor cells.

Using a transgenic mouse model of breast cancer, researchers found that interferon gamma, a cytokine or chemical messenger that is produced by cells of the immune system upon activation, plays a role in tumor relapse. In humans, interferon gamma is also produced by white blood cells of the immune system in response to invasion by pathogens or tumors in order to protect the host against infection or cancers. Production of interferon gamma by lymphocytes against tumors is considered a sign of good prognosis; however, recent study findings indicate that this may not be the case. The findings were reported in the March 2007 issue of the European Journal of Immunology, the official journal of the European Federation of Immunological Societies.

"By understanding the molecular mechanisms involved with tumor relapse, we can create tailored vaccines that can induce specific types of immune responses in patients, rather than inducing a broad range of immune responses - some of which may be detrimental or may induce tumor relapse," said lead investigator, Masoud H. Manjili, D.V.M., Ph.D., a member scientist with the Massey Cancer Center.

"Ultimately, we hope to offer a new polypeptide vaccine approach that induces tumor killing without causing HER-2/neu loss. Loss of HER-2/neu is a mechanism that tumors utilize to escape the immune-mediated destruction," he said.

Since 2000, Manjili and his colleagues have been employing animal models of breast cancer to evaluate anti-tumor efficacy of a vaccine formulation they created. This vaccine formulation combines a heat shock protein 110 (HSP110), as an adjuvant, with a tumor antigen HER-2/neu, as a protein target expressed in breast tumors. Adjuvants are agents that are able to modify another agent – basically working as a chemical catalyst.

The work is supported by the National Cancer Institute and the Susan G. Komen Breast Cancer Foundation.

Manjili, who is an assistant professor in the Department of Microbiology and Immunology in the VCU School of Medicine, collaborated with VCU researchers Maciej Kmieciak, Ph.D., with the Department of Microbiology and Immunology, and Catherine I. Dumur, Ph.D., with the Department of Pathology; and Keith L. Knutson, Ph.D., with the Department of Immunology at the Mayo Clinic College of Medicine in Rochester, Minn.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Cancer Gamma Immunology immune system interferon gamma relapse

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>