Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanisms Involved with Tumor Relapse Identified

15.03.2007
Researchers work toward creating a tailored breast cancer vaccine

Researchers at Virginia Commonwealth University's Massey Cancer Center studying the interaction between the immune system and cancer cells have identified interferon gamma as one of the signaling proteins involved with tumor relapse.

The findings may help researchers develop tailored vaccines and other immunotherapeutic strategies to fight a number of cancers. Immunotherapy involves the manipulation of the immune system – by introducing an antibody or lymphocytes, or immunization with a tumor vaccine – to recognize and eradicate tumor cells.

Using a transgenic mouse model of breast cancer, researchers found that interferon gamma, a cytokine or chemical messenger that is produced by cells of the immune system upon activation, plays a role in tumor relapse. In humans, interferon gamma is also produced by white blood cells of the immune system in response to invasion by pathogens or tumors in order to protect the host against infection or cancers. Production of interferon gamma by lymphocytes against tumors is considered a sign of good prognosis; however, recent study findings indicate that this may not be the case. The findings were reported in the March 2007 issue of the European Journal of Immunology, the official journal of the European Federation of Immunological Societies.

"By understanding the molecular mechanisms involved with tumor relapse, we can create tailored vaccines that can induce specific types of immune responses in patients, rather than inducing a broad range of immune responses - some of which may be detrimental or may induce tumor relapse," said lead investigator, Masoud H. Manjili, D.V.M., Ph.D., a member scientist with the Massey Cancer Center.

"Ultimately, we hope to offer a new polypeptide vaccine approach that induces tumor killing without causing HER-2/neu loss. Loss of HER-2/neu is a mechanism that tumors utilize to escape the immune-mediated destruction," he said.

Since 2000, Manjili and his colleagues have been employing animal models of breast cancer to evaluate anti-tumor efficacy of a vaccine formulation they created. This vaccine formulation combines a heat shock protein 110 (HSP110), as an adjuvant, with a tumor antigen HER-2/neu, as a protein target expressed in breast tumors. Adjuvants are agents that are able to modify another agent – basically working as a chemical catalyst.

The work is supported by the National Cancer Institute and the Susan G. Komen Breast Cancer Foundation.

Manjili, who is an assistant professor in the Department of Microbiology and Immunology in the VCU School of Medicine, collaborated with VCU researchers Maciej Kmieciak, Ph.D., with the Department of Microbiology and Immunology, and Catherine I. Dumur, Ph.D., with the Department of Pathology; and Keith L. Knutson, Ph.D., with the Department of Immunology at the Mayo Clinic College of Medicine in Rochester, Minn.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Cancer Gamma Immunology immune system interferon gamma relapse

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>