Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botanists identify new species of North American bamboo

15.03.2007
Two Iowa State University botanists and their colleague at the University of North Carolina have discovered a new species of North American bamboo in the hills of Appalachia. It is the third known native species of the hardy grass. The other two were discovered more than 200 years ago.

ISU botanists Lynn Clark and Jimmy Triplett study bamboo diversity and evolution. They first heard about "hill cane" from University of North Carolina botanist Alan Weakley. As soon as they saw it, they knew it was different.

'Hill cane'

Lynn Clark, Iowa State professor of ecology, evolution and organismal biology, and Ph.D. student Jimmy Triplett study bamboo diversity and evolution. They first heard about "hill cane" from Alan Weakley, a botanist at the University of North Carolina. Although the plant was known to the people in the area, its distinctiveness was not recognized.

... more about:
»Triplett »botanist »discovered »native »species

Hill cane differs from the other two native North American bamboo species -- commonly known as switch cane and river cane -- in an important way: It drops its leaves in the fall.

"That's why it was recognized locally as being different," Clark said. "It's pretty uncommon for bamboos to drop their leaves."

Clark should know. She's an internationally recognized bamboo expert. She had previously discovered 74 new species of bamboo.

"All the other new ones came from Central and South America," she said. "It's so exciting to find a new species in our own backyard!"

Her 75th species discovery has been named Arundinaria appalachiana. Clark, Triplett and Weakley recently completed the intricate process botanists are obliged to follow to officially name and describe a newfound species. Following rules laid out in the International Code of Botanical Nomenclature, they prepared a short description of the plant in Latin and a longer one in English, and provided drawings and other information to make a strong case for the recognition of A. appalachiana as a distinct species of bamboo. They submitted their evidence in a manuscript to the scientific journal Sida, Contributions to Botany, convincing the peer reviewers that the bamboo they discovered was new. Their study was published last fall.

Bamboos of North America

There are 1,400 known species of bamboo. Of those, about 900 are tropical and 500 are temperate. The bamboos of North America are found in the Eastern and Southeastern United States, from New Jersey south to Florida and west to Texas. River cane (Arundinaria gigantea) occurs in low woods and along riverbanks. Switch cane (Arundinaria tecta) is found in non-alluvial swamps, moist pine barrens, live oak woods and along sandy margins of streams.

"Most people have no idea that we have native bamboo in the U.S.," Clark said. "But it has been a very important plant ecologically. And there's recent interest in using it for re-vegetation projects because it's native and was used for habitat by so many different animals, especially birds."

Building a bamboo family tree

Clark and Triplett began looking at the North American bamboos as part of a larger collaboration with botanists worldwide to develop an evolutionary family tree of bamboo species. They're using modern DNA sequencing technologies together with traditional plant taxonomy, which involves observation and description of a plant's form, anatomy, ecology and other characteristics.

"We want to get the big picture of how all the temperate bamboos are related to each other. That means taking inventory of what exists, then comparing notes," Clark said.

They already know that the closest relatives of native North American bamboos are not in Central or South America, but are in East Asia.

"That's a well-known pattern of diversity in plants and animals. Plants known to be closely related that were previously found across a large area of the earth are only in those two areas now. For various reasons, the Eastern U.S. and East Asia are a repository for a lot of diversity," Clark said.

"But we still don't understand exactly how long it has been since our bamboos separated from their Asiatic cousins. And we don't know how we ended up with three species in North America and 500 in East Asia," she said.

Although botanists had previously studied the North American bamboos, no one had done extensive fieldwork to study and collect the plants in the wild, and questions remained as to whether there was really more than just a single species. In 2003, with funding from the National Geographic Society, Clark and Triplett set off for the Southeast to find the switch cane and river cane in their native habitats.

They knew it was different

"Once we actually saw the plants in the field, we knew quickly that there were two distinct species," Clark said. "But we kept hearing about a third plant, called hill cane."

And as soon as they saw it, they knew it was different.

Teddi Barron | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Triplett botanist discovered native species

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>