Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify molecular basis of inflammatory bowel disease

Scientists decipher a signaling pathway crucially involved in Crohn’s disease and Ulcerative Colitis

Inflammatory bowel diseases, such as Crohn’s disease and Ulcerative Colitis, severely impair the lives of more than four million people worldwide. The development of effective therapies against these diseases requires an understanding of their underlying molecular mechanisms. Researchers from the Universities of Cologne and Mainz in Germany, the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy and their collaborators, have now deciphered a molecular signal that triggers chronic intestinal inflammation. The study, which is published in the current online issue of Nature, shows that blocking a signaling molecule causes severe intestinal inflammation in mice and reveals a molecular mechanism that is likely to also underpin human inflammatory bowel disease.

Our gut is home to an enormous number of bacteria, which live in harmony with us and help in food digestion. If they penetrate the wall of the intestine, however, these bacteria can become harmful and cause diseases. This is why a thin, continuous layer of interconnected cells, called an epithelium, lines the intestinal surface creating a barrier that prevents bacteria from crossing that border. The mechanisms that control the integrity of the epithelium and contribute to maintaining a healthy gut have remained unknown.

Arianna Nenci from the group of Manolis Pasparakis at the University of Cologne and Christoph Becker, a member of Markus Neurath’s group in Mainz, investigated the role of NF-kB, a signaling molecule that helps cells cope with stress, in the intestinal epithelium. Using sophisticated genetic methods, they generated a mouse model that does not express NEMO, a protein needed to activate NF-kB, in intestinal epithelial cells. As a result, these mice developed severe chronic intestinal inflammation very similar to Colitis in humans.

“A close look at the mice revealed that their gut epithelium was damaged,” says Manolis Pasparakis, who recently moved from heading a lab at EMBL to becoming a professor at the University of Cologne. “NF-kB acts as a survival signal for cells. Without the molecule cells are much more likely to die and this is what happened in the intestines of our mice; individual epithelial cells died disrupting the gut lining.”

Through these gaps bacteria could penetrate the intestinal wall. Right behind the gut epithelium lie cells of the intestinal immune system, the biggest immune system of our body. It detects the invading bacteria and generates a strong immune response to fight off the invaders. In the process of combating the bacteria, the immune cells secrete a cocktail of signals that bring about the symptoms of inflammation.

“This is where the vicious cycle closes,” explains Markus Neurath, professor at the University of Mainz. “Inflammatory signals also reach the epithelial cells that due to the lack of NF-kB are very sensitive to them and die. The death of more epithelial cells creates bigger gaps in the gut lining so that more bacteria enter. The result is a constant immune response leading to chronic inflammation as we know it from inflammatory bowel diseases in humans.”

The finding that defective NF-kB signaling in the gut epithelium initiates the outbreak of inflammation in the intestine provides a new paradigm for the pathogenesis of inflammatory bowel disease. Since the immune systems of mice and humans are very similar, the insights gained through the mouse model are steps towards a better understanding of the mechanisms causing human inflammatory bowel diseases and may pave the way for novel therapeutic approaches.

Anna-Lynn Wegener | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>