Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular basis of inflammatory bowel disease

15.03.2007
Scientists decipher a signaling pathway crucially involved in Crohn’s disease and Ulcerative Colitis

Inflammatory bowel diseases, such as Crohn’s disease and Ulcerative Colitis, severely impair the lives of more than four million people worldwide. The development of effective therapies against these diseases requires an understanding of their underlying molecular mechanisms. Researchers from the Universities of Cologne and Mainz in Germany, the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy and their collaborators, have now deciphered a molecular signal that triggers chronic intestinal inflammation. The study, which is published in the current online issue of Nature, shows that blocking a signaling molecule causes severe intestinal inflammation in mice and reveals a molecular mechanism that is likely to also underpin human inflammatory bowel disease.

Our gut is home to an enormous number of bacteria, which live in harmony with us and help in food digestion. If they penetrate the wall of the intestine, however, these bacteria can become harmful and cause diseases. This is why a thin, continuous layer of interconnected cells, called an epithelium, lines the intestinal surface creating a barrier that prevents bacteria from crossing that border. The mechanisms that control the integrity of the epithelium and contribute to maintaining a healthy gut have remained unknown.

Arianna Nenci from the group of Manolis Pasparakis at the University of Cologne and Christoph Becker, a member of Markus Neurath’s group in Mainz, investigated the role of NF-kB, a signaling molecule that helps cells cope with stress, in the intestinal epithelium. Using sophisticated genetic methods, they generated a mouse model that does not express NEMO, a protein needed to activate NF-kB, in intestinal epithelial cells. As a result, these mice developed severe chronic intestinal inflammation very similar to Colitis in humans.

“A close look at the mice revealed that their gut epithelium was damaged,” says Manolis Pasparakis, who recently moved from heading a lab at EMBL to becoming a professor at the University of Cologne. “NF-kB acts as a survival signal for cells. Without the molecule cells are much more likely to die and this is what happened in the intestines of our mice; individual epithelial cells died disrupting the gut lining.”

Through these gaps bacteria could penetrate the intestinal wall. Right behind the gut epithelium lie cells of the intestinal immune system, the biggest immune system of our body. It detects the invading bacteria and generates a strong immune response to fight off the invaders. In the process of combating the bacteria, the immune cells secrete a cocktail of signals that bring about the symptoms of inflammation.

“This is where the vicious cycle closes,” explains Markus Neurath, professor at the University of Mainz. “Inflammatory signals also reach the epithelial cells that due to the lack of NF-kB are very sensitive to them and die. The death of more epithelial cells creates bigger gaps in the gut lining so that more bacteria enter. The result is a constant immune response leading to chronic inflammation as we know it from inflammatory bowel diseases in humans.”

The finding that defective NF-kB signaling in the gut epithelium initiates the outbreak of inflammation in the intestine provides a new paradigm for the pathogenesis of inflammatory bowel disease. Since the immune systems of mice and humans are very similar, the insights gained through the mouse model are steps towards a better understanding of the mechanisms causing human inflammatory bowel diseases and may pave the way for novel therapeutic approaches.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>