Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular basis of inflammatory bowel disease

15.03.2007
Scientists decipher a signaling pathway crucially involved in Crohn’s disease and Ulcerative Colitis

Inflammatory bowel diseases, such as Crohn’s disease and Ulcerative Colitis, severely impair the lives of more than four million people worldwide. The development of effective therapies against these diseases requires an understanding of their underlying molecular mechanisms. Researchers from the Universities of Cologne and Mainz in Germany, the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy and their collaborators, have now deciphered a molecular signal that triggers chronic intestinal inflammation. The study, which is published in the current online issue of Nature, shows that blocking a signaling molecule causes severe intestinal inflammation in mice and reveals a molecular mechanism that is likely to also underpin human inflammatory bowel disease.

Our gut is home to an enormous number of bacteria, which live in harmony with us and help in food digestion. If they penetrate the wall of the intestine, however, these bacteria can become harmful and cause diseases. This is why a thin, continuous layer of interconnected cells, called an epithelium, lines the intestinal surface creating a barrier that prevents bacteria from crossing that border. The mechanisms that control the integrity of the epithelium and contribute to maintaining a healthy gut have remained unknown.

Arianna Nenci from the group of Manolis Pasparakis at the University of Cologne and Christoph Becker, a member of Markus Neurath’s group in Mainz, investigated the role of NF-kB, a signaling molecule that helps cells cope with stress, in the intestinal epithelium. Using sophisticated genetic methods, they generated a mouse model that does not express NEMO, a protein needed to activate NF-kB, in intestinal epithelial cells. As a result, these mice developed severe chronic intestinal inflammation very similar to Colitis in humans.

“A close look at the mice revealed that their gut epithelium was damaged,” says Manolis Pasparakis, who recently moved from heading a lab at EMBL to becoming a professor at the University of Cologne. “NF-kB acts as a survival signal for cells. Without the molecule cells are much more likely to die and this is what happened in the intestines of our mice; individual epithelial cells died disrupting the gut lining.”

Through these gaps bacteria could penetrate the intestinal wall. Right behind the gut epithelium lie cells of the intestinal immune system, the biggest immune system of our body. It detects the invading bacteria and generates a strong immune response to fight off the invaders. In the process of combating the bacteria, the immune cells secrete a cocktail of signals that bring about the symptoms of inflammation.

“This is where the vicious cycle closes,” explains Markus Neurath, professor at the University of Mainz. “Inflammatory signals also reach the epithelial cells that due to the lack of NF-kB are very sensitive to them and die. The death of more epithelial cells creates bigger gaps in the gut lining so that more bacteria enter. The result is a constant immune response leading to chronic inflammation as we know it from inflammatory bowel diseases in humans.”

The finding that defective NF-kB signaling in the gut epithelium initiates the outbreak of inflammation in the intestine provides a new paradigm for the pathogenesis of inflammatory bowel disease. Since the immune systems of mice and humans are very similar, the insights gained through the mouse model are steps towards a better understanding of the mechanisms causing human inflammatory bowel diseases and may pave the way for novel therapeutic approaches.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>