Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rarity among arachnids, predatory whip spiders have a sociable family life

14.03.2007
Whip spiders, considered by many to be creepy-crawly, are giving new meaning to the term touchy-feely.

In two species of whip spiders, or amblypygids, mothers caress their young with long feelers and siblings stick together in social groups until they reach sexual maturity. This is surprising behavior for these arachnids, long-thought to be purely aggressive and anti-social, according to a Cornell researcher.

Social behavior is extremely rare in arachnids, a class that includes spiders, amblypygids, scorpions and mites, among others; only 76 (or less than 0.1 percent) out of the 93,000 known arachnid species have been observed living in social groups. The research, appearing in recent issues of both the Journal of Arachnology and Natural History magazine, marks the first time social behavior has been reported in amblypygids.

"This was the best example I had ever seen of friendly behavior in an arachnid," said Linda Rayor, senior research associate in entomology and the lead author of both articles. Rayor describes in the articles how mothers habitually stroke their offspring with their long, thin whiplike front legs and how the siblings congregate in social groups.

... more about:
»Rayor »amblypygid »arachnid »diadema »siblings

"I was amazed at how incredibly interactive the groups are," said Rayor. "They are in constant tactile contact with one another. They are constantly exploring one another and interacting with their siblings."

Scientists have long thought these creatures were solitary and cannibalistic predators, as past studies have focused mainly on the adult's dramatic courtship and fighting behaviors. Rayor believes that because young amblypygids slip easily into tight crevasses and their coloring matches their backgrounds, the social behavior of the youngsters has been missed in the wild.

Rayor's research on two species in captivity (the dime-sized Phrynus marginemaculatus from Florida and a much larger Damon diadema from Tanzania) suggests that both mothers and siblings form long-lasting, socially interactive groups. As soon as the siblings approach sexual maturity though (about 12 to 14 months of age), they start showing aggressive, life-threatening behavior toward each other.

To test if D. diadema were congregating simply to inhabit a preferred site in the cages, Rayor and Lisa Taylor, CALS '01, created cages with uniform plywood surfaces and found that the siblings grouped together but changed their location daily, suggesting individuals preferred proximity to each other over a specific location. When siblings were removed from a familiar cage and scattered about another large unfamiliar cage, within minutes, they gathered back together.

In one experiment conducted by Rayor and Rachel Walsh, A&S '05, when 7- to 9-month-old D. diadema were separated from their families and later returned to cages with either their own group or an unfamiliar group, they reacted more aggressively toward the new group than their own.

Rayor suspects that benefits of whip spider social behavior include enhanced safety from predators. Although there are few reports of other creatures eating them, a mother nearby may offer young amblypygids some protection. When Rayor disturbed D. diadema youngsters, they gathered closer to each other or their mother. Now and then, the mother threatened Rayor. The adolescents, though, tended to scurry away and hide when faced with threat. While sharing prey is an advantage for other arachnids with social tendencies, Rayor said she has yet to witness amblypygids intentionally sharing prey.

More than 100 amblypygid species live in tropical areas worldwide. These arachnids, whose bodies range from one-eighth to about one and three-quarters inches long, have two elongated pedipalps (like arms) in front tipped with stilettos that are used to capture prey. The first pair of legs has developed into long whiplike feelers that are three to four times longer than the remaining three pairs of legs. The exceptionally flexible whips can move 360 degrees around their bodies and are covered with hairs that sense their environment.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Rayor amblypygid arachnid diadema siblings

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>