Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study reveals how some molecules inhibit growth of lung cancer cells

Findings provide new direction to drug design

By mapping the interlocking structures of small molecules and mutated protein "receptors" in non-small cell lung cancer (NSCLC) cells, scientists at Dana-Farber Cancer Institute and their colleagues have energized efforts to design molecules that mesh with these receptors, potentially interfering with cancer cell growth and survival.

In a study published in the March issue of Cancer Cell, researchers led by Michael Eck, MD, PhD, of Dana-Farber used X-ray crystallography to determine the structure of two mutated forms of the epidermal growth factor receptor (EGFR) in lung cancer cells. EGFR, a protein known as a tyrosine kinase, plays a key role in relaying growth signals within cells. When mutated, it can become overactive, leading to excessive cell division and cancer.

"It turns out that in some cases, the very mutation that causes the cancer in the first place is also the cancer’s Achilles’ heel," said Eck, the paper’s senior author. "We now see that inhibitors such as gefitinib actually bind more tightly to some of the cancer-causing mutants, even though they were originally developed to block the normal receptor."

... more about:
»Cancer »EGFR »Mutant »Mutation »effective »mutated »receptor

Cai-Hong Yun, PhD, of Dana-Farber is the paper’s first author.

Mutations in the EGFR kinase domain occur in approximately 16 percent of NSCLCs, but at much higher frequencies in selected populations, including nonsmokers, women, and East Asian patients. Laboratory and clinical studies have shown that tyrosine kinase inhibitors are more effective against some EGFR mutations than others, although the molecular reasons for this are unclear. By developing a better understanding of the effect of the mutations on inhibitor binding at a structural level, it may be possible to develop more effective therapies.

In the current study, Eck and his colleagues analyzed the three-dimensional structures of the normal and mutated versions of EGFR bound to several different types of inhibitor molecules. They found that two inhibitors – the drug gefitinib (marketed as Iressa(R), and a compound called AEE788 – bind especially tightly to one of the mutated forms, meaning these inhibitors are potentially more effective at blocking the growth of cancer cells containing that mutation. In the case of gefitinib, it bound 20 times more tightly to the L858R mutant than to the normal, mutation-free EGFR.

The research team concluded that the particular EGFR mutation within tumor cells determines which inhibitor molecules are likely to be able to slow or stop the growth of those cells.

"Although structural divergence in the EGFR mutants may complicate efforts to treat the disease, it may also present an advantage in that it introduces the possibility of developing inhibitors that target specific mutations, which should lead to more effective treatments," said Eck, who also an associate professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. "These targeted therapies likely would be less toxic as they, in theory, would not affect the normal functioning EGFR proteins."

Bill Schaller | EurekAlert!
Further information:

Further reports about: Cancer EGFR Mutant Mutation effective mutated receptor

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>