Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How human can a worm be?

14.03.2007
Several neurodegenerative diseases are linked to the production of mutated proteins, which accumulate in the brain of patients and are believed to lead to the neurons death characteristic of these disorders.

Nevertheless, despite this shared mechanism, each of these diseases is unique, as are the brain areas affected, and to understand them is crucial to identify the biological function of the mutated protein behind the disease, something not always easy. But now, an elegant study just published in the advance online edition of the Faseb journal shows how the study of a simpler genetic model - the worm Caenorhabditis elegans (C.elegans) – was able to give insight into the function of the human protein ataxin-3, which when mutated is linked to Machado-Joseph disease (MJD), a fatal genetic neurodegenerative disorder.

The research relies on the fact that vital molecules tend to be conserved throughout evolution, and shows that ataxin-3 seems to be involved in protein degradation, structural and motility components and in several development pathways. Even more interestingly, the study also shows that C.elegans without ataxin-3 have apparently no signs of disease or loss of any of the neural functions characteristic of MJD, raising the possibility that ataxin-3 elimination could treat MJD patients without producing major side effects

Machado-Joseph disease (MJD), also called spinocerebellar ataxia type 3, belongs to the Polyglutamine (polyQ) group of disorders, which is characterised by an abnormal repetition of three nucleotides (DNA building blocks) within a gene, that leads to proteins with long stretches of glutamine (thus being called Poly Q disorders), and that include, among others, Huntington’s disease. These mutated proteins are incapable of folding and working properly (proper protein folding is critical for its biological function) and, instead, accumulate in the brain of patients where they are linked to the neurons’ death characteristic of these disorders. In the case of MJD the pathology results from a mutation in the ATX-3 gene that encodes a protein of unknown function called ataxin-3, and is associated with increasing limb weakness (ataxia means lack of muscle control) and widespread clumsiness, difficulty with speech and swallowing, vision problems and a general loss of motor control that eventually confines the patient to a wheelchair.

MJD affects specifically the spinocerebellar neurons even if ataxin-3 is widely produced in the brain and this, together with the fact that patients producing both mutated and normal ataxin-3 suffer less disease than patients with only the abnormal protein, emphasises the importance of understand the biological functions of ataxin-3 to understand the mechanism of MJD.

In order to try and identify these functions and due to all the difficulties of working in humans Ana-João Rodrigues, Patricia Maciel and colleagues in Portugal and the USA decided to used instead the worm C.elegans, which is a species widely used as model to understand human diseases due to their common conserved metabolic and developmental pathways, as well as genetic material. The team of researchers started by identifying in C.elegans the gene and the protein equivalent to ATX-3 and ataxin-3 in humans, to then find that ataxin-3 in the two species shared functional groups, reacted with the same molecules, had similar patterns of expression and showed the same activity when tested in laboratory. These results confirmed that ataxin-3 study in C.elegans was a valid model to understand the functions of its human counterpart.

The next step was the study of C.elegans that had been manipulated into losing the ATX-3 gene, looking for alterations in these animals. To the researchers surprise, C.elegans without ataxin-3 looked and behaved normally showing no changes in locomotion or other characteristics typical of MJD patients. However, when a molecular analysis was done in these specimens, it was found that about 1.4% of their genome (290 genes) was altered, including genes involved in the conversion of signals from outside the cell into functional changes within the cell (also called signal transduction), the ubiquitinproteasome pathway (a mechanism for protein degradation), structural and motility components and development pathways. Interestingly, previous work by other researchers have suggested that many of the biochemical pathways found altered in C.elegans mutants are also disturbed in MJD patients, again supporting the validity of this model to study human ataxin-3.

Based on their results, Rodrigues, Maciel and colleagues were able to propose a model where ataxin-3 is associated to the regulation of multiple cellular processes through protein degradation (by the ubiquitin proteasome pathway which we know is central to the regulation of almost all cellular processes), and transcriptional regulation, which is the process by which different genes are expressed in different tissues and organs or at different times of development. The involvement of ataxin-3 in cellular regulation explains why such multitude of different genes is affected when ATX-3 is deregulated. These functions, the authors propose, might be specific for some cells only, what would help explaining why just a particular subset of neurons is affected in MJD, despite the fact that ataxin-3 is widely present in neurons. The observation that ataxin-3 loss does not seem to affect the general state of the animals, is another important result from the research as it raises new therapeutic possibilities for MJD.

Rodrigues, Maciel and colleagues’ work shows how the use of simple genetic models, like C.elegans, which have the advantage of possessing a fully sequenced genome and many of their genes’ functions already identified, can help to understand better complex human diseases by allowing a manipulation impossible to exercise in human subjects. The fact that ataxin-3 in humans and C.elegans not only share functional molecular groups and react to the same molecules, but also that ATX3 disruption affects the same genes in humans and C.elegans strongly supports the importance and validity of this study.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.fasebj.org/cgi/content/abstract/fj.06-7002comv1

Further reports about: Atx-3 MJD ataxin-3 cellular process characteristic elegans function neurons

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>