Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cell Type Identified in Cancer Development

14.03.2007
Scientists have discovered a new type of cell that appears to play a role in the development of cancer – a highly volatile, precancerous stem cell that can either remain benign or become malignant, depending upon environmental cues.

The finding may help define the role of cancer stem cells in the growth and recurrence of the disease as well as offer new options for cancer prevention, detection and treatment.

Current cancer stem cell theory holds that tumors are comprised of a variety of cell types. Among them is a small subset of rather primitive cells that, like other stem cells in the body, are self-sustaining, self-renewing and multipotent, or capable of creating other types of cells and tissues. These cells are different from normal stem cells, however, in that injecting even as few as 100 of them into laboratory animals will cause cancer. Scientists have dubbed these cancer stem cells.

Cancer stem cells were first identified in leukemia, but they have also been found in breast, brain, colon and prostate cancers. Because they are rather unstable, they are notoriously tricky to isolate and describe. They are also resistant to virtually any kind of treatment, and some scientists believe they are the reason cancer recurs.

... more about:
»Cancer »Gao »Ohio »immune system »malignant »pCSC »precancerous

Until now, no one has known how they arise.

But a team of scientists, led by Dr. Jian-Xin Gao, a researcher in the department of pathology at Ohio State University Medical Center, has identified a new set of cells he calls precancerous stem cells (pCSCs).

These cells share some of the characteristics full-fledged cancer stem cells have, but they are different in that they respond to distinct cell signals that determine their ultimate fate – whether they will continue to grow into cancer or cancer stem cells, lie inactive or be eradicated by the body’s immune system.

“These hybrid cells are very complex. They have properties of normal and abnormal stem cells, and do not always lead to cancer – only some of the time, and under very specific conditions,” says Gao, who is also a member of the Ohio State University Comprehensive Cancer Center. “These cells appear to be a whole new class of cells involved in the development of cancer.”

The study appears in the Wednesday, March 21 edition of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

The findings emerged from a study in which Gao and his colleagues were investigating tumor growth in mice. They discovered that some of the animals had lymphoma, and that several cell lines from those tumors carried a unique and provocative phenotype, or surface protein signature: They carried neither the Sca-1 or c-kit markers, hallmarks of normal bone marrow stem cells, nor the lineage markers most of the cancer cells had, but they did exhibit stem-like structure.

The researchers suspected these unusual cells might be precancerous stems cells and designed several tests and experiments to find out more about them.

They selected three pCSC lines and injected them subcutaneously, intraperitoneally or intravenously into three groups of mice. The mice represented different levels of immune function: One group was comprised of severe combined immune deficient mice, a second group was composed of mice whose immune systems had been knocked out by radiation, but had been partially restored by an infusion of bone marrow cells; and the third group was made up of normal, healthy mice.

The results showed that the strength of the immune system affected whether or not the mice got cancer. The scientists found that the pCSCs, like normal stem cells, had the ability to create various types of benign cells in mice with healthy or recovering immune systems. These daughter cells, however, were likely to die, especially when they encountered signals to further differentiate – a strong contrast to the behavior of normal stem cells.

“We thought this was an interesting development,” says Gao, “because these precancerous cells were actually stopped from becoming malignant. We are calling this process ‘differentiation-induced cell death,’ a protective mechanism the body may invoke to prevent pCSCs from maturing into full-blown cancer stem cells.”

It was a different story with the mice with impaired immune systems, however. In those animals, the pCSCs developed into solid tumors, developing additional mutations in different cell types as they grew and spread.

Additional experiments revealed that the piwil2 gene may exclusively regulate the process of pCSC development.

Gao says these data suggest some important characteristics of pCSCs.

“First, it appears that pCSCs require some sort of signal, or cue, from their immediate environment that directs them to become benign or malignant. Second, it seems clear that they can be detected and eliminated by a robust immune system when they are actively developing into cancer cells.”

Cancer stem cell theory is still in its infancy, but Gao feels these findings, if validated by additional studies, point to a candidate population of precancerous cells that may one day be a valuable target for new drugs and treatments. “To cure cancer, we have to eliminate all potential malignant cells – not just the ones within easy reach.”

The study received grant support from a number of sources, including the American Cancer Society, the National Cancer Institute, the U. S. Army Chronic Myelogenous Leukemia Research Program and the National Institute of Child and Human Development.

Colleagues contributing to the study include lead author Li Chen, Rulong Shen, Yin Ye, Ying Wang, Yan Liu, Larry Lasky, Nyla Heerema, Allen Yates and Sanford Barsky, all members of Ohio State’s Department of Pathology; Xingluo Liu, Wenrui Duan, Jing Wen, Jason Zimmerer, Danilo Perrotti and William Carson, from Ohio State’s Comprehensive Cancer Center; Xin-An Pu from OSU’s Center for Molecular Neurobiology; Haifan Lin, from Yale University; Keiko Ozato, from the National Institute of Child Health and Human Development; and Satomi Kuramochi-Miyagawa, and Toru Nakano from Osaka University, Japan.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000293

Further reports about: Cancer Gao Ohio immune system malignant pCSC precancerous

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>