Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cell Type Identified in Cancer Development

14.03.2007
Scientists have discovered a new type of cell that appears to play a role in the development of cancer – a highly volatile, precancerous stem cell that can either remain benign or become malignant, depending upon environmental cues.

The finding may help define the role of cancer stem cells in the growth and recurrence of the disease as well as offer new options for cancer prevention, detection and treatment.

Current cancer stem cell theory holds that tumors are comprised of a variety of cell types. Among them is a small subset of rather primitive cells that, like other stem cells in the body, are self-sustaining, self-renewing and multipotent, or capable of creating other types of cells and tissues. These cells are different from normal stem cells, however, in that injecting even as few as 100 of them into laboratory animals will cause cancer. Scientists have dubbed these cancer stem cells.

Cancer stem cells were first identified in leukemia, but they have also been found in breast, brain, colon and prostate cancers. Because they are rather unstable, they are notoriously tricky to isolate and describe. They are also resistant to virtually any kind of treatment, and some scientists believe they are the reason cancer recurs.

... more about:
»Cancer »Gao »Ohio »immune system »malignant »pCSC »precancerous

Until now, no one has known how they arise.

But a team of scientists, led by Dr. Jian-Xin Gao, a researcher in the department of pathology at Ohio State University Medical Center, has identified a new set of cells he calls precancerous stem cells (pCSCs).

These cells share some of the characteristics full-fledged cancer stem cells have, but they are different in that they respond to distinct cell signals that determine their ultimate fate – whether they will continue to grow into cancer or cancer stem cells, lie inactive or be eradicated by the body’s immune system.

“These hybrid cells are very complex. They have properties of normal and abnormal stem cells, and do not always lead to cancer – only some of the time, and under very specific conditions,” says Gao, who is also a member of the Ohio State University Comprehensive Cancer Center. “These cells appear to be a whole new class of cells involved in the development of cancer.”

The study appears in the Wednesday, March 21 edition of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

The findings emerged from a study in which Gao and his colleagues were investigating tumor growth in mice. They discovered that some of the animals had lymphoma, and that several cell lines from those tumors carried a unique and provocative phenotype, or surface protein signature: They carried neither the Sca-1 or c-kit markers, hallmarks of normal bone marrow stem cells, nor the lineage markers most of the cancer cells had, but they did exhibit stem-like structure.

The researchers suspected these unusual cells might be precancerous stems cells and designed several tests and experiments to find out more about them.

They selected three pCSC lines and injected them subcutaneously, intraperitoneally or intravenously into three groups of mice. The mice represented different levels of immune function: One group was comprised of severe combined immune deficient mice, a second group was composed of mice whose immune systems had been knocked out by radiation, but had been partially restored by an infusion of bone marrow cells; and the third group was made up of normal, healthy mice.

The results showed that the strength of the immune system affected whether or not the mice got cancer. The scientists found that the pCSCs, like normal stem cells, had the ability to create various types of benign cells in mice with healthy or recovering immune systems. These daughter cells, however, were likely to die, especially when they encountered signals to further differentiate – a strong contrast to the behavior of normal stem cells.

“We thought this was an interesting development,” says Gao, “because these precancerous cells were actually stopped from becoming malignant. We are calling this process ‘differentiation-induced cell death,’ a protective mechanism the body may invoke to prevent pCSCs from maturing into full-blown cancer stem cells.”

It was a different story with the mice with impaired immune systems, however. In those animals, the pCSCs developed into solid tumors, developing additional mutations in different cell types as they grew and spread.

Additional experiments revealed that the piwil2 gene may exclusively regulate the process of pCSC development.

Gao says these data suggest some important characteristics of pCSCs.

“First, it appears that pCSCs require some sort of signal, or cue, from their immediate environment that directs them to become benign or malignant. Second, it seems clear that they can be detected and eliminated by a robust immune system when they are actively developing into cancer cells.”

Cancer stem cell theory is still in its infancy, but Gao feels these findings, if validated by additional studies, point to a candidate population of precancerous cells that may one day be a valuable target for new drugs and treatments. “To cure cancer, we have to eliminate all potential malignant cells – not just the ones within easy reach.”

The study received grant support from a number of sources, including the American Cancer Society, the National Cancer Institute, the U. S. Army Chronic Myelogenous Leukemia Research Program and the National Institute of Child and Human Development.

Colleagues contributing to the study include lead author Li Chen, Rulong Shen, Yin Ye, Ying Wang, Yan Liu, Larry Lasky, Nyla Heerema, Allen Yates and Sanford Barsky, all members of Ohio State’s Department of Pathology; Xingluo Liu, Wenrui Duan, Jing Wen, Jason Zimmerer, Danilo Perrotti and William Carson, from Ohio State’s Comprehensive Cancer Center; Xin-An Pu from OSU’s Center for Molecular Neurobiology; Haifan Lin, from Yale University; Keiko Ozato, from the National Institute of Child Health and Human Development; and Satomi Kuramochi-Miyagawa, and Toru Nakano from Osaka University, Japan.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000293

Further reports about: Cancer Gao Ohio immune system malignant pCSC precancerous

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>