Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability of mRNA/DNA and DNA/DNA Duplexes modulates mRNA Transcription

14.03.2007
The distribution of the four nucleotides along the DNA sequence encodes the genetic information in living systems. However, do nucleic acids possess other attributes that contribute to their biological functions?

Recent work of a team led by Stoyno Stoynov, working at the Bulgarian Academy of Sciences, suggests that thermodynamic stability of DNA/DNA and RNA/DNA duplexes influences mRNA transcription. The manuscript appears in the March 14 issue of the international, peer-reviewed, open-access online journal PLoS ONE.

“These findings challenge the way we look at DNA,” says Stoynov. "Until now we have pretty much simplified our view of DNA helix as a Lego combination of four different pieces, which encodes genetic information and contain patterns, recognized by DNA binding proteins. However, nucleic acids are real molecules with defined physical characteristics, which can influence their biological functions.”

In this work the authors present a calculation of the thermodynamic stability of DNA/DNA and mRNA/DNA duplexes across the genomes of four species in the genus Saccharomyces. The researchers found that genes of these organisms are more stable than intergenic regions near their 3’-end. In addition, introns (internal non-coding regions in genes) are significantly less stable than exons (coding sequences in genes), suggesting that stable sense duplexes are characteristic of the coding sequences.

Next, the authors showed a relationship between the pattern of thermodynamic stability and the mRNA level of genes. There is a general trend of increased mRNA level with increasing thermodynamic stability of the respective gene. Positive correlation was observed between the mRNA level and the stability of DNA/DNA and mRNA/DNA duplexes of both exons and introns. In contrast, an inverse relationship exists between mRNA levels and stability of the region near 3’-end of genes. mRNA levels increase with decreasing thermodynamic stability of this region. “The observed correlations are impressive, given that several other factors like promoter effectiveness, promoter regulation, and mRNA half-life directly influence mRNA level, as well,” says Stoynov.

The researchers also observed that, in contrast to intergenic regions, genes have more stable sense RNA/DNA duplexes than potential antisense RNA/DNA duplexes. “The difference between stability of sense and antisense mRNA/DNA is a property that can aid gene discovery,” explains Stoynov.

“Thermodynamic stability of nucleic acid duplexes depends primarily on thermodynamic properties of nearest-neighbor nucleotide interactions. Therefore, the stability of DNA/DNA and RNA/DNA duplexes is determined by the distribution of the ten possible DNA/DNA nucleotide duplets (dAA/dTT, dGC/dCG, etc.) and the sixteen possible RNA/DNA duplets (rAA/dTT, rUA/dAT, etc.). Such duplet code does not carry any genetic information but seems to modulate the level of RNA expression. It is amazing that the same nucleotide sequence can simultaneously encode its respective protein and modulate its level of expression.” says Stoynov.

The mechanism of how DNA/DNA and mRNA/DNA duplex stability influences mRNA level remains unclear. The authors propose two models, but further work is needed to understand how thermodynamic stability modulates mRNA level.

The study was funded by Alexander von Humboldt Foundation Return Fellowship and NATO Grant EAP.RIG.981642.

The work was conducted by current and former scientists from the Institute of Molecular Biology at Bulgarian Academy of Sciences. Assen Roguev, Dragomir Krastev, and Anna Ivanova are currently working at the University of California, San Francisco, Max Planck Institute of Molecular Cell Biology and Genetics in Dresden and Carl Gustav Carus Medical School, Dresden University of Technology, respectively. Three of the co-authors (Rayna Kraeva Dragomir Krastev and Anna Ivanova) were diploma students while working on this study. “There is no adequate financial support for PhD students and postdoctoral fellows in Bulgarian scientific institutions. Therefore, I am working predominantly with well prepared and highly motivated diploma students,” says Stoynov.

The Institute of Molecular Biology at the Bulgarian Academy of Sciences was founded in 1960 and is the leading research and training institution in Bulgaria in the field of molecular biology and biochemistry.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000290

Further reports about: DNA DNA/DNA Nucleotide RNA/DNA Stoynov duplet mRNA mRNA/DNA thermodynamic

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>