Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Overexpression at Heart of Heart Failure

14.03.2007
Chronic heart failure resulting from dilated cardiomyopathy is rapidly emerging as a disease of epidemic proportions.1 Molecular mechanisms are being studied and advances have been made in a minority of cases, e.g.: the familial forms.

Intracellular [Ca2+]i homeostasis is essential for normal cardiac function and integrity, and dysregulation of [Ca2+]i is a hallmark of advanced heart failure.2 The primary trigger for cardiac [Ca2+]i transients is calcium entry through the pore subunit of the voltage-dependent L-type channels (L-VDCC), but their role in heart failure is still controversial. Electrophysiological studies on individual L-VDCCs from failing human heart have revealed an increased single-channel activity but the mechanism for this biophysical phenotype has remained unknown.3,4

In a paper in this week’s PLoS ONE, Roger Hullin of the Swiss Heart Center Bern, Jan Matthes of University of Cologne, Germany, and collaborators in both Germany and the USA demonstrate an up-regulation of expression of an accessory subunit of the L-VDCC complex (beta 2-subunit) that is responsible for the altered channel behavior in human heart failure. Similar changes of both beta 2-subunit expression and single-channel behavior were also observed in a mouse model of heart failure with cardiac overexpression of the human L-type Ca2+-channel pore. The causal role of the increased beta 2-subunit expression for the “heart failure type” of single L-VDCC characteristics was proven when the authors developed a novel, cardiac-specific, drug-inducible beta 2a subunit overexpression transgenic mouse which was crossbred with the channel pore overexpressing mouse when still nonfailing (“Adaptive phase”). In the nonfailing double transgenics, the induction of beta 2a protein expression increased the activity of single ventricular L-VDCC, rendering these channels phenotypically identical to human and mouse heart failure.

The authors conclude that electrical remodeling of the L-VDCC, based on gene expression changes, is an early step in a cascade ultimately induced in heart failure. This provides a rational framework for novel therapeutic intervention in heart failure.

... more about:
»L-VDCC »L-type »beta »heart failure
REFERENCES
1.Kannel WB (2000) Incidence and epidemiology of heart failure. Heart Fail Rev 5: 167-73.
2.Sjaastad I et al. (2003) Heart failure - a challenge to our current concepts of excitation-contraction coupling. J Physiol 546: 33-47.
3.Schroeder F et al. (1998) Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 98: 969-76.

4.Bodi I et al. (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115: 3306-17.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000292

Further reports about: L-VDCC L-type beta heart failure

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>