Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic pathways to curable and incurable forms of pancreatic cancer identified

13.03.2007
Pancreatic ductal adenocarcinoma is an almost uniformly fatal disease regardless of the stage at time of diagnosis. However, a small percentage of patients develop a form of ductal adenocarcinoma associated with cystic lesions that can be detected earlier, is less aggressive and has a 50 percent long-term survival rate.

Why cystic ductal pancreatic cancer behaves differently, despite carrying the same basic genetic mutations as the more common and deadly type of ductal pancreatic cancer, has long been a mystery. Now researchers at Fred Hutchinson Cancer Research Center have unlocked the genetic reason why.

Using unique mouse models to mimic the progression of both forms of human pancreatic cancer, researchers have discovered that a specific sequence of otherwise common genetic mutations is responsible for sending cells down the less-traveled path toward cystic pancreatic cancer versus the well-traveled route to the more fatal form of ductal pancreatic cancer.

Sunil Hingorani, M.D., assistant member of the Hutchinson Center's Clinical Research and Public Health Sciences divisions, led a study to be published in the March 12 issue of the journal Cancer Cell that explains this sequence and details why the cells behave differently.

"Although at their end stage the two different routes to ductal pancreatic cancer can look very much the same under the microscope, involve the same constellation of genetic events, and culminate in invasive and metastatic disease that can ultimately kill patients, one route is 100 percent fatal while the other is 50 percent curable," Hingorani said. "Until now we didn't understand why. What these studies suggest is that it's not just the total complement of mutations that determines the behavior of these cancers but also the sequence in which the mutations arise."

About 5 percent of all primary tumors of the pancreas, out of 40,000 annual new cases in the United States, arise from cystic tumors.

The findings reported in the journal by Hingorani and colleagues represent an accidental discovery. The researchers started out studying the common genetic pathways to pancreatic ductal adenocarcinoma in hopes of finding clues to developing early detection biomarkers and possible treatments to halt the progression of the disease. The work involved activating the pancreatic cancer oncogene called Kras and then selectively mutating tumor-suppressor genes such as p53, p16 and Dpc4 in different combinations.

In the mouse model, which Hingorani first developed while at the University of Pennsylvania, the combination of Kras and p53 led to the more deadly form of pancreatic ductal adenocarcinoma. Earlier studies by researchers in Boston also found the same association between Kras and p16. From studies of human cancers, it is known that mutations in Dpc4 can also occur, but they do so late in the course of disease progression. The current study showed that the combination of Kras and an early mutation of Dcp4, in which one copy of the suppressor gene is eliminated, lead to cancer by a different path, beginning with the creation of a distinct class of precancerous lesions in the ductal epithelium called mucinous cystic neoplasms (MCN). This initiates a process that results in the rarer but far less deadly cystic pancreatic cancer.

MCN lesions often are large enough to be detected early by MRI or CT scan and also to cause symptoms. The cells in this cancer also react differently to a key signaling protein, TGFb, which can induce cancer cells to change shape and become more mobile and invasive. It turns out that the cystic pancreatic cancer cells are resistant to these effects of TGFb and these types of cancers are also less likely to invade surrounding tissues and to metastasize, or spread, to other organs. These properties likely contribute to the improved survival seen with this form of the cancer, Hingorani said.

Conversely, the initial lesions that lead to the more common and deadly form of pancreatic ductal adenocarcinoma, called pancreatic epithelial neoplasms, are tiny enough to be undetectable until the disease has progressed to the point where survival is almost nil. Moreover, these cells appear to be highly sensitive to the tumor-promoting properties of TGFb and thereby manifest a more aggressive behavior.

"With accurate animal models of both forms of pancreatic ductal cancers now in hand, it should be possible to unravel the detailed mechanisms behind their distinct behavior and hopefully identify points of vulnerability in the more fatal form to improve survival," Hingorani said.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

Further reports about: Hingorani KRAS adenocarcinoma cystic genetic mutation pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>