Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding by Rice University chemists could aid development of new nanodevices

13.03.2007
Gold nanorods assemble themselves into rings

Rice University chemists have discovered that tiny building blocks known as gold nanorods spontaneously assemble themselves into ring-like superstructures.

This finding, which will be published as the inside cover article of the March 19 international edition of the chemistry journal Angewandte Chemie, could potentially lead to the development of novel nanodevices like highly sensitive optical sensors, superlenses, and even invisible objects for use in the military.

“Finding new ways to assemble nano-objects into superstructures is an important task because at the nanoscale, the properties of those objects depend on the arrangement of individual building blocks,” said principal investigator Eugene Zubarev, the Norman Hackerman-Welch Young Investigator and assistant professor of chemistry at Rice.

... more about:
»Zubarev »droplets »thousands

Although ring-like assemblies have been observed in spherical nanoparticles and other symmetrical molecules, until now such structures had not been documented with rod-shaped nanostructures.

Like many nanoscale objects, gold nanorods are several billionths of a meter, or 1,000 times smaller than a human hair. Zubarev used hybrid nanorods for this research because attached to their surface are thousands of polymer molecules, which are flexible chainlike structures. The central core of the nanorods is an inorganic crystal, but the polymers attached to the outside are organic species. The combination of the inorganic and organic features resulted in a hybrid structure that proved to be critical to the study.

Working with Rice graduate student Bishnu Khanal, Zubarev placed the nanorods in a solution of organic solvent called chloroform. As the chloroform evaporated, its surface temperature dropped low enough to cause condensation of water droplets from the air, much like how dew forms. As thousands and thousands of microdroplets of water formed on the surface of the liquid chloroform, the nanorods that had been suspended in the solution started to press up against the round droplets and form rings around them. The polymer coating prevented the rods from being absorbed into the droplets because it is insoluble in water.

After the droplets evaporated, the nanorods remained in their ring formation.

“When nanorods are organized into a ring, significant changes in their optical and electromagnetic properties occur,” Zubarev said. “These can have technological applications in the area of metamaterials, which have enormous potential in opto-electronics, communications and military applications.”

Zubarev said thousands of well-defined rings can be produced in a matter of seconds using the approach from his study. “This method is surprisingly simple and can be used for organizing nanocrystals of various shapes, size and chemical composition into circular arrays.”

The research was funded by the National Science Foundation and the Welch Foundation.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Zubarev droplets thousands

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>