Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus discovery revolutionizes ethanol and hygiene industries

13.03.2007
A research team at Borås University College in Sweden, headed by Professor Mohammad Taherzadeh, has made a unique and revolutionary discovery.

The discovery consists of a fungus that extremely effectively converts waste to ethanol. From the residual biomass, moreover, it is possible to extract an antibacterial and super-absorbent material that can be composted. This is good news for the paper industry and for producers of diapers and feminine hygiene items, and not least for nature.

It was about seven months ago that Mohammad Taherzadeh and his research team started their search for a fungus for ethanol production.

Together with scientists from Göteborg University, they found a group of filament-producing fungi, zygomycetes, that have proven to have interesting properties.

"Today baker's yeast is used for the production of ethanol, but we have found a fungus that is more effective than baker's yeast," says Mohammad Taherzadeh, professor of biotechnology at the School of Engineering, Borås University College, and one of the world's leading ethanol researchers.

Easy to use

Within the order zygomycetes, more than 100 different fungi were tested, and in the end, the one with the best properties was singled out. The fungus, which is a saprophyte, is extremely easy to grow in waste and drainage.

"It is low maintenance, requiring hardly anything to start growing and degrading the waste. The temperature plays some role. We have tried to get it to grow in sulfite lye, but also in brush, forestry waste, and fruit rinds, and the results were equally good in all cases," reports Mohammad Taherzadeh.

Converts waste to raw material

Being able to convert sulfite lye for the production of ethanol is good news, in both economic and environmental terms.

Sulfite lye, which is a byproduct of the production of paper and viscose pulp, is difficult for factories to dispose of since it contains chemicals that must not be casually released in nature. From being a highly undesirable byproduct for the paper industry, sulfite lye will now be an attractive raw material for the extraction of ethanol.

"This is truly exciting. Zygomycetes in ethanol production represent an unknown area. We are the only scientists in the world to have presented them as ethanol-producing fungi, but we realize that the potential is huge," says Mohammad Taherzadeh, who relates a curious anecdote that the fungi have another use in Indonesia: they are a food fungus.

Super-absorbent bonus effect

Zygomycetes are not only highly effective in producing ethanol; the research team also found that the biomass that is left over in the production of ethanol can be used to extract a cell-wall material that is super-absorbent and antibacterial. What's more, it's a biological material that can be composted and recycled.

This discovery opens an entirely new dimension for research on the fungi, according to Mohammad Taherzadeh, whose project "Production of antimicrobial super-absorbent from sulfite lye using zygomycetes" was recently awarded more than SEK 800,000 from the Knowledge Foundation to continue its research into this cell-wall material.

Reduces greenhouse effect

Super-absorbent material is used in diapers and feminine hygiene products, but also for bandages and other products for treating wounds. Today the super-absorbent in these types of products is polyacrylate, but polyacrylate is not biodegradable: it has to be burned. This combustion release carbon dioxide in the air, a compound that aggravates the greenhouse effect. On the other hand, if polyacrylate is replaced with this biological super-absorbent, diapers will not have to be incinerated, but instead can be composted, retted, and converted to biogas. This, in turn, entails a reduction in the emission of carbon dioxide into the air.

Kills bacteria and fungi

The antibacterial property of the biological super-absorbent is also advantageous in comparison with polyacrylate.

"Our cell-wall material absorbs about ten times its weight in liquid. It can also kill bacteria and fungi, which means that a diaper would not irritate the skin and would last longer before any unpleasant odors arise. We have experimented with adding e-coli bacteria as well, an aggressive sort of bacteria, and the cell-wall material manages to neutralize them," says Mohammad Taherzadeh. Equally good results are reported from experiments with other bacteria types, such as Klebsiella pneumonia and Staphylococcus aureus, as well as the fungus Candida albicans.

"The research will continue on ethanol production as well, but our focus is now on developing the cell-wall material further. Since this is an unknown field, a great deal of work will be needed for us to fully understand the potential of this material," says Mohammad Taherzadeh.

In stores soon?

This research is also tied to product development work, being carried out in close collaboration with Rexcell AB (formerly Duni) and Medical Equipment Development AB.

"Together with these two companies we are trying to add this cell-wall material to paper in a process called 'airlaid non-woven'." The aim is to develop a commercial product that can be used in many industries, according to Mohammad Taherzadeh. "Our experiments have been promising thus far, and our collaborative partners are looking into the possibility of patenting the method."

The research team includes:

Mohammad Taherzadeh, professor at the School of Engineering, Borås University College, project director of "Production of antimicrobial super-absorbent from sulfite lye using zygomycetes"
Nukael Skrigvars, professor at the School of Engineering, Borås University College
Hans Björk, head of the School of Engineering, Borås University College
Akram Zamani, doctoral candidate, School of Engineering, Borås University College

Anneli Wadenfalk, doctoral candidate, School of Engineering, Borås University College

The team also comprises several students at the School of Engineering who are writing their master's theses.

A further doctoral candidate will be employed on the project.

For more information, please contact Professor Mohammad Taherzadeh, project director of the project "Production of antimicrobial super-absorbent from sulfite lye using zygomycetes" at e-mail: mohammad.taherzadeh@hb.se; phone: +46 (0)33-4355908; cell phone: +46 (0)707-171032.

Annie Andréasson | idw
Further information:
http://www.vr.se

Further reports about: Borås Ethanol Hygiene Mohammad Taherzadeh lye polyacrylate super-absorbent

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>