Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus discovery revolutionizes ethanol and hygiene industries

13.03.2007
A research team at Borås University College in Sweden, headed by Professor Mohammad Taherzadeh, has made a unique and revolutionary discovery.

The discovery consists of a fungus that extremely effectively converts waste to ethanol. From the residual biomass, moreover, it is possible to extract an antibacterial and super-absorbent material that can be composted. This is good news for the paper industry and for producers of diapers and feminine hygiene items, and not least for nature.

It was about seven months ago that Mohammad Taherzadeh and his research team started their search for a fungus for ethanol production.

Together with scientists from Göteborg University, they found a group of filament-producing fungi, zygomycetes, that have proven to have interesting properties.

"Today baker's yeast is used for the production of ethanol, but we have found a fungus that is more effective than baker's yeast," says Mohammad Taherzadeh, professor of biotechnology at the School of Engineering, Borås University College, and one of the world's leading ethanol researchers.

Easy to use

Within the order zygomycetes, more than 100 different fungi were tested, and in the end, the one with the best properties was singled out. The fungus, which is a saprophyte, is extremely easy to grow in waste and drainage.

"It is low maintenance, requiring hardly anything to start growing and degrading the waste. The temperature plays some role. We have tried to get it to grow in sulfite lye, but also in brush, forestry waste, and fruit rinds, and the results were equally good in all cases," reports Mohammad Taherzadeh.

Converts waste to raw material

Being able to convert sulfite lye for the production of ethanol is good news, in both economic and environmental terms.

Sulfite lye, which is a byproduct of the production of paper and viscose pulp, is difficult for factories to dispose of since it contains chemicals that must not be casually released in nature. From being a highly undesirable byproduct for the paper industry, sulfite lye will now be an attractive raw material for the extraction of ethanol.

"This is truly exciting. Zygomycetes in ethanol production represent an unknown area. We are the only scientists in the world to have presented them as ethanol-producing fungi, but we realize that the potential is huge," says Mohammad Taherzadeh, who relates a curious anecdote that the fungi have another use in Indonesia: they are a food fungus.

Super-absorbent bonus effect

Zygomycetes are not only highly effective in producing ethanol; the research team also found that the biomass that is left over in the production of ethanol can be used to extract a cell-wall material that is super-absorbent and antibacterial. What's more, it's a biological material that can be composted and recycled.

This discovery opens an entirely new dimension for research on the fungi, according to Mohammad Taherzadeh, whose project "Production of antimicrobial super-absorbent from sulfite lye using zygomycetes" was recently awarded more than SEK 800,000 from the Knowledge Foundation to continue its research into this cell-wall material.

Reduces greenhouse effect

Super-absorbent material is used in diapers and feminine hygiene products, but also for bandages and other products for treating wounds. Today the super-absorbent in these types of products is polyacrylate, but polyacrylate is not biodegradable: it has to be burned. This combustion release carbon dioxide in the air, a compound that aggravates the greenhouse effect. On the other hand, if polyacrylate is replaced with this biological super-absorbent, diapers will not have to be incinerated, but instead can be composted, retted, and converted to biogas. This, in turn, entails a reduction in the emission of carbon dioxide into the air.

Kills bacteria and fungi

The antibacterial property of the biological super-absorbent is also advantageous in comparison with polyacrylate.

"Our cell-wall material absorbs about ten times its weight in liquid. It can also kill bacteria and fungi, which means that a diaper would not irritate the skin and would last longer before any unpleasant odors arise. We have experimented with adding e-coli bacteria as well, an aggressive sort of bacteria, and the cell-wall material manages to neutralize them," says Mohammad Taherzadeh. Equally good results are reported from experiments with other bacteria types, such as Klebsiella pneumonia and Staphylococcus aureus, as well as the fungus Candida albicans.

"The research will continue on ethanol production as well, but our focus is now on developing the cell-wall material further. Since this is an unknown field, a great deal of work will be needed for us to fully understand the potential of this material," says Mohammad Taherzadeh.

In stores soon?

This research is also tied to product development work, being carried out in close collaboration with Rexcell AB (formerly Duni) and Medical Equipment Development AB.

"Together with these two companies we are trying to add this cell-wall material to paper in a process called 'airlaid non-woven'." The aim is to develop a commercial product that can be used in many industries, according to Mohammad Taherzadeh. "Our experiments have been promising thus far, and our collaborative partners are looking into the possibility of patenting the method."

The research team includes:

Mohammad Taherzadeh, professor at the School of Engineering, Borås University College, project director of "Production of antimicrobial super-absorbent from sulfite lye using zygomycetes"
Nukael Skrigvars, professor at the School of Engineering, Borås University College
Hans Björk, head of the School of Engineering, Borås University College
Akram Zamani, doctoral candidate, School of Engineering, Borås University College

Anneli Wadenfalk, doctoral candidate, School of Engineering, Borås University College

The team also comprises several students at the School of Engineering who are writing their master's theses.

A further doctoral candidate will be employed on the project.

For more information, please contact Professor Mohammad Taherzadeh, project director of the project "Production of antimicrobial super-absorbent from sulfite lye using zygomycetes" at e-mail: mohammad.taherzadeh@hb.se; phone: +46 (0)33-4355908; cell phone: +46 (0)707-171032.

Annie Andréasson | idw
Further information:
http://www.vr.se

Further reports about: Borås Ethanol Hygiene Mohammad Taherzadeh lye polyacrylate super-absorbent

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>