Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants' management of nutrient suggests environmental remedies

12.03.2007
A new understanding of how plants manage their internal calcium levels could potentially lead to genetically engineering plants to avoid damage from acid rain, which robs soil of much of its calcium.

"Our findings should help scientists understand how plant ecosystems respond to soil calcium depletion and design appropriate strategies to protect the environment," said Zhen-Ming Pei, a Duke University assistant professor of biology who led the study, to be published in the Friday, March 9, issue of the journal Science.

The research was supported by the National Science Foundation, the U.S. Department of Agriculture and Xiamen University in China.

Calcium enters plants dissolved within the water that roots take in from surrounding soil. As the water circulates through a plant, its dissolved calcium gets shuttled where it is needed to give the plant's cells their structural rigidity. To grow, a plant needs a reliable supply of calcium. But calcium supplies coming into the plant cycle up and down over the course of the day, dropping to a minimum at night.

... more about:
»CAS »PEI »Sensor »acid rain »nutrient

Plants use molecular sensors and flows of chemical messengers to detect and regulate the storage and distribution of vital nutrients such as water and calcium.

To track the calcium sensors in the model mustard plant Arabidopsis, the team used molecules originally found in jellyfish that emit light in response to calcium's presence. To deduce what the sensor does and does not do, the researchers also introduced an "antisense" version of the calcium-sensor protein that abolishes the sensor's effects.

The calcium-sensing molecule in plants, called CAS, was first identified by Pei's group and described in the Sept. 11, 2003, issue of the journal Nature. Arabidopsis is favored for such experiments because it has a relatively short life cycle of eight weeks and its genome has been completely sequenced.

By tracking the glow of the jellyfish molecules, the researchers learned that CAS plays a number of roles in plants. The scientists initially thought it simply monitored changes in levels of dissolved calcium that enters the plant from the outside. They discovered instead that CAS also triggers the release of internal calcium that is stored within the plant via a chemical signaling system.

This coupled system, the researchers deduce, ensures that constant levels of calcium remain available to a plant's cells despite widely varying amounts of the nutrient coming in during each day and night cycle.

"The sensors try to detect how much calcium is there, and they coordinate that level with growth and development," Pei said. "If they detect there is not enough calcium, the plant may elect to hold off on growth and development until it has more calcium. The plant may thus appear not to be doing well."

The findings have prompted Pei to begin a new research program aimed at altering this calcium balancing act to help plants adjust to the ravages of acid rain.

Produced by interactions between water vapor and human-created pollutants, acid rain can disrupt plants' calcium balance by leaching significant amounts of calcium from agricultural and forest soils as well as from plant leaves, according to Pei.

"It has been found that some soils have lost as much as 75 percent of their calcium during the past century," he said. "One way to respond is to add new calcium to the soil. But we can't do that everywhere that it's needed and it is also expensive."

Although acid rain robs soil of much of its calcium, enough is still left for plants to live on, Pei added. But he suspects that sensors like CAS may misinterpret "less" as "too little" in those plants and unnecessarily signal for growth shutdowns. Perhaps a plant's calcium sensors could instead be tricked into interpreting "less" as "still enough" and keep building new cell walls, he suggested.

As a preamble to such genetic engineering, Pei is now leading a study in his native China that will evaluate the physiology of various plants affected by acid rain. "It is in the south of China where acid rain is huge because of industry," he said. "China is becoming the factory for the United States.

"We will monitor calcium changes in the soil there, and then clone calcium receptors from various plant species to see whether those receptors are responsible for growth and how they respond to acidity," he said. "Some plants grow terribly under acid rain, but others grow very well."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: CAS PEI Sensor acid rain nutrient

More articles from Life Sciences:

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>