Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants' management of nutrient suggests environmental remedies

A new understanding of how plants manage their internal calcium levels could potentially lead to genetically engineering plants to avoid damage from acid rain, which robs soil of much of its calcium.

"Our findings should help scientists understand how plant ecosystems respond to soil calcium depletion and design appropriate strategies to protect the environment," said Zhen-Ming Pei, a Duke University assistant professor of biology who led the study, to be published in the Friday, March 9, issue of the journal Science.

The research was supported by the National Science Foundation, the U.S. Department of Agriculture and Xiamen University in China.

Calcium enters plants dissolved within the water that roots take in from surrounding soil. As the water circulates through a plant, its dissolved calcium gets shuttled where it is needed to give the plant's cells their structural rigidity. To grow, a plant needs a reliable supply of calcium. But calcium supplies coming into the plant cycle up and down over the course of the day, dropping to a minimum at night.

... more about:
»CAS »PEI »Sensor »acid rain »nutrient

Plants use molecular sensors and flows of chemical messengers to detect and regulate the storage and distribution of vital nutrients such as water and calcium.

To track the calcium sensors in the model mustard plant Arabidopsis, the team used molecules originally found in jellyfish that emit light in response to calcium's presence. To deduce what the sensor does and does not do, the researchers also introduced an "antisense" version of the calcium-sensor protein that abolishes the sensor's effects.

The calcium-sensing molecule in plants, called CAS, was first identified by Pei's group and described in the Sept. 11, 2003, issue of the journal Nature. Arabidopsis is favored for such experiments because it has a relatively short life cycle of eight weeks and its genome has been completely sequenced.

By tracking the glow of the jellyfish molecules, the researchers learned that CAS plays a number of roles in plants. The scientists initially thought it simply monitored changes in levels of dissolved calcium that enters the plant from the outside. They discovered instead that CAS also triggers the release of internal calcium that is stored within the plant via a chemical signaling system.

This coupled system, the researchers deduce, ensures that constant levels of calcium remain available to a plant's cells despite widely varying amounts of the nutrient coming in during each day and night cycle.

"The sensors try to detect how much calcium is there, and they coordinate that level with growth and development," Pei said. "If they detect there is not enough calcium, the plant may elect to hold off on growth and development until it has more calcium. The plant may thus appear not to be doing well."

The findings have prompted Pei to begin a new research program aimed at altering this calcium balancing act to help plants adjust to the ravages of acid rain.

Produced by interactions between water vapor and human-created pollutants, acid rain can disrupt plants' calcium balance by leaching significant amounts of calcium from agricultural and forest soils as well as from plant leaves, according to Pei.

"It has been found that some soils have lost as much as 75 percent of their calcium during the past century," he said. "One way to respond is to add new calcium to the soil. But we can't do that everywhere that it's needed and it is also expensive."

Although acid rain robs soil of much of its calcium, enough is still left for plants to live on, Pei added. But he suspects that sensors like CAS may misinterpret "less" as "too little" in those plants and unnecessarily signal for growth shutdowns. Perhaps a plant's calcium sensors could instead be tricked into interpreting "less" as "still enough" and keep building new cell walls, he suggested.

As a preamble to such genetic engineering, Pei is now leading a study in his native China that will evaluate the physiology of various plants affected by acid rain. "It is in the south of China where acid rain is huge because of industry," he said. "China is becoming the factory for the United States.

"We will monitor calcium changes in the soil there, and then clone calcium receptors from various plant species to see whether those receptors are responsible for growth and how they respond to acidity," he said. "Some plants grow terribly under acid rain, but others grow very well."

Monte Basgall | EurekAlert!
Further information:

Further reports about: CAS PEI Sensor acid rain nutrient

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>