Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find suntan's 'master regulator'

A gene known to prevent cancer also acts as a master regulator of the suntan response, researchers report in the March 9, 2007 issue of Cell, published by Cell Press.

The team discovered in studies of mice and human skin that p53, a gene best known for keeping tumors at bay, is ultimately responsible for activating the tanning machinery that darkens the skin of so many sun-seeking beachgoers, thereby protecting them from sunburns.

"The p53 tumor suppressor is commonly mutated in human cancer," explained David Fisher, director of the Melanoma Program in Medical Oncology at Dana-Farber Cancer Institute in Boston and senior author of the study. "Now, we’ve found that it also plays a role in the skin’s tanning response to the sun’s ultraviolet radiation—a nearly constant environmental exposure."

The researchers also found evidence that the same essential process underlies other instances of skin darkening, including age spots and the spots that sometimes occur during pregnancy or as a side effect of certain medications, Fisher said.

... more about:
»Fisher »MSH »Pigment »exposure »keratinocyte »p53

The Dana-Farber researchers had already demonstrated that, rather than the pigment-producing melanocytes, the more abundant and superficial keratinocytes react to sun exposure. "It makes sense that you would want the most superficial cells to act as UV sensors," Fisher said of his earlier discovery.

When keratinocytes are exposed to the sun’s rays, they produce melanocyte-stimulating hormone (MSH). MSH triggers receptors found on the surface of melanocytes, causing them to manufacture the skin-bronzing pigment.

Differences among people in their ability to tan stem from variation among them in the MSH receptor, he explained. For example, the receptor variant found in redheads doesn’t respond to MSH, leaving them unable to get a tan in the natural way.

However, the researchers hadn’t identified the factors responsible for turning on the pigment-stimulating hormone’s production in the first place.

They’ve now traced the process back to p53, a transcription factor that controls the activity of other genes and that is involved in many stress-related responses. Indeed, they showed, p53 directly stimulates the activity of the MSH-producing gene in response to UV radiation.

MSH is one product of a larger gene sequence that also encodes the natural morphine-like substance, called ß-endorphin, among other peptides, Fisher explained. While MSH drives the suntan response, ß-endorphin is believed to drive sun-seeking behavior and may act as a natural painkiller.

Fisher’s team further found that the ears and tails of mice lacking p53 lose the ability to tan. Similarly, the induction of ß-endorphin by UV also depends on p53.

"The induction of ß-endorphin appears to be hard-wired to the tanning pathway," Fisher said. "This might explain addictive behaviors associated with sun-seeking or the use of tanning salons."

The researchers found evidence that similar events to those seen in the mice also occur in human skin. They showed that p53 is rapidly induced in virtually every keratinocyte of human skin samples within an hour of UV exposure, followed by the induction of MSH and a transcription factor that governs the production of pigment by melanocytes.

The findings led the researchers to consider that p53 could be involved in other instances of skin pigmentation not associated with the sun. For instance, some chemotherapy drugs can cause the skin to become "hyperpigmented," as observed by Fisher’s team.

"We know that p53 is induced by many types of stress," he said. Therefore, they reasoned, other types of stress—due to age, pregnancy, drugs or other factors—might produce a reaction that "mimics" the suntan response. Indeed, they found that a drug known to stimulate p53 darkened the skin of normal mice but not the skin of mice lacking p53.

To further explore the connection between p53 and other forms of skin pigmentation, the researchers examined human basal cell carcinomas, one of the most common forms of skin cancer. The cancer is pigmented in some patients, but not others, they knew. In every case they found that the pigmented cancers harbored a normal p53 gene, while the nonpigmented samples harbored a mutated version of the gene.

"Certain drugs are probably inadvertently activating p53 and, with it, the sun tanning pathway," Fisher speculated. "We might now be able to find ways to interfere with this process to prevent it from occurring."

By the same token, a more complete understanding of the suntan process could lead to products that can produce a tan safely without exposure to potentially damaging UV radiation—even in those people who otherwise don’t tan. Fisher said he is involved in a small biotechnology company that is working to develop such a product.

Erin Doonan | EurekAlert!
Further information:

Further reports about: Fisher MSH Pigment exposure keratinocyte p53

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>