Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antifungal drug kills TB bug

12.03.2007
Scientists hoping to find new treatments for one of the world’s most deadly infectious diseases say drugs used to treat common fungal infections may provide the answer.

Tuberculosis, or TB, is a highly contagious disease of the lungs that was thought to have been virtually eliminated by the 1960s, but is now resurgent and kills nearly two million people worldwide every year. New infections are occurring at a rate of one per second.

Of equal concern is the dramatic rise in the incidence of new strains of TB that are resistant to traditional antibiotics. As a result, the World Health Organisation, the Bill Gates Foundation and the European Union have all launched initiatives to tackle the problem.

Now, biologists at The University of Manchester have shown that chemicals called azoles – the active agent in many antifungal drugs – kill the TB bacteria, and could be effective in tackling the emerging drug-resistant strains.

... more about:
»P450 »TB bacterium »antibiotic »bug

“TB is back with a vengeance with a third of the world’s population currently infected,” said Professor Andrew Munro, who led the research in Manchester’s Faculty of Life Sciences.

“The bacterium survives the initial attack by the body’s immune system and then lies dormant, usually in the lungs, waiting for any sign of weakness, such as a secondary infection. Its resurgence over the last 20 years has been closely associated with the AIDS epidemic, which destroys the human immune system and has allowed TB to get a grip once again.”

London is the TB capital of Europe, although most large cities here and in North America have seen rapid increases in the number of TB infections. However, the problem is most acute in Africa and Asia where HIV/AIDS is also most prolific and a shortage of traditional TB medicines and problems with patient compliance has led to the emergence of drug-resistant strains of the disease.

“There were only ever a limited number of drugs that were effective against TB anyway,” said Professor Munro, who is based in the University’s £38 million Manchester Interdisciplinary Biocentre.

“People in places like India or Africa would be given antibiotics but often not in sufficient quantities to kill the bug completely; this is how resistant strains develop and these regions have become huge breeding grounds for these ‘super strains’.”

Funded by the EU’s NM4TB (new medicines for tuberculosis) project, the Manchester team set about trying to find alternative drugs that could be used to treat these multi-drug resistant varieties of TB, known as MDR-TB.

“We knew that the TB bacterium was a clever organism, able to evade the human immune system and to survive long-term, sometimes unnoticed, in the body. We also realised that these peculiar features of the TB bacterium must mean that there are ‘unusual’ aspects of its composition and biochemistry that set it apart from most other bacteria and that could provide new targets for antibiotic drugs.

“When we began looking at the bug and its DNA content in more detail, we noticed it had some unusual characteristics. In particular, we noted the presence of a very large number of enzymes called P450s, which are usually associated with more complex organisms.

“In humans, P450s oxygenate molecules in the body and are essential for steroid metabolism; they are also prevalent in the liver where they help us detoxify and dispose of countless chemicals and toxins that enter our system. Most bacteria have few, if any, P450s but we discovered that the TB bacterium has 20 different types.”

Even more exciting for the team was the knowledge that existing anti-fungal drugs already target P450s as a way to treat, for example, systemic and more superficial infections caused by fungi such as Candida albicans (the causative agent of thrush).

“The class of drugs called azoles are able to kill off fungal infections by blocking the actions of one of its P450s that is essential for maintaining the cell structure,” said Professor Munro. “We were able to show in laboratory experiments that various types of these azole drugs were also very good at killing the TB bacterium, and also that they bind very tightly to a number of the TB P450 enzymes that we have isolated – inactivating their function.”

The research – published in the Journal of Biological Chemistry – offers the potential of a whole new approach to fighting the TB bug and has already attracted interest from one major pharmaceutical company.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: P450 TB bacterium antibiotic bug

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>