Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant size morphs dramatically as scientists tinker with outer layer

09.03.2007
Jack's magical beans may have produced beanstalks that grew and grew into the sky, but something about normal, run-of-the-mill plants limits their reach upward.

For more than a century, scientists have tried to find out which part of the plant both drives and curbs growth: is it a shoot's outer waxy layer? Its inner layer studded with chloroplasts? Or the vascular system that moves nutrients and water? The answer could have great implications for modern agriculture, which desires a modern magical bean or two.

Now, in the March 8 issue of the journal Nature, researchers in the Plant Biology Laboratory at the Salk Institute for Biological Studies provide the answer. They succeeded in making tiny plants big and big plants tiny by controlling growth signals emanating from the plant's outer layer, its epidermis.

These findings could eventually be used by agronomists to manipulate plant growth pathways to maximize crop yield, or even reduce leaf size or leaf angle in plants that need to be spaced closely together, says the study's lead author, Joanne Chory, Ph.D., professor and director of the Plant Biology Laboratory and investigator with the Howard Hughes Medical Institute.

... more about:
»Arabidopsis »BRI1 »Epidermis »Steroid »dwarf

Chory and her laboratory team have spent years helping to define how a plant "knows" when to grow and when to stop – which is a "big question in developmental biology," she says. For their experiments, they rely on the model system Arabidopsis thaliana, a small plant related to cabbage and mustard whose genome has been decoded. Over the years, the researchers have built up a whole tool kit, learning how to add and subtract genes in order to determine form and function. Among their discoveries is a class of dwarf plants whose size is about one-tenth the size of a single leaf of the full-sized plant.

Over the past decade, Chory's laboratory and others have shown that these dwarf plants are defective in making or responding to a steroid hormone called brassinolide. Among the genes identified was the plant steroid receptor, BRI1 ("bry-one") that is activated by the steroid. The dwarfed Arabidopsis doesn't express BRI1 at all, unlike normal Arabidopsis, which expresses BRI1 on both the outer waxy, protective epidermis (covering the whole leaf and shoot), and the inner sub-epidermal layer, which contains the chloroplasts that conduct photosynthesis.

In the current study, first author Sigal Savaldi-Goldstein, Ph.D., a postdoctoral researcher in the Plant Biology Laboratory, and Charles Peto, an electron microscopy specialist in the Laboratory of Neuronal Structure and Function, conducted a series of experiments that addressed an old debated question: what tissues of the leaf drive or restrict growth? The answer was simple: the epidermis is in control.

They found that when they drive the expression of the BRI1 receptor in the epidermis of a dwarf Arabidopsis, while leaving the sub-epidermal layer as it was (without BRI1 receptors), the tiny plant morphed into a full-sized plant. In the second set of experiments, they used an enzyme to break down the steroid hormones in the epidermis, and found that a normal sized plant shrunk into a dwarf. "These are simple experiments, but it took 10 years of work in order for us to be able to ask this question," Chory says.

"A second remarkable finding from the study is that "cells in the outer layer talk to the cells in the inner layers, telling them when to grow or to stop growing. This communication is very important to the life of a plant, which can't move and so must have a coordinated system to respond to a changing environment," explains Savaldi-Goldstein.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Arabidopsis BRI1 Epidermis Steroid dwarf

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>