This conclusion, which runs counter to the views of the European Group on Ethics under the European Commission, was reached by an interdisciplinary group at the Center for Bioethics at the Karolinska Institute and Uppsala University in an academic article in the international journal Stem Cells.
The article is the result of a unique collaborative effort involving ethics researchers Mats G. Hansson and Gert Helgesson at the Center for Bioethics, Richard Wessman at the Department of Law, Uppsala University, and one of the world’s leading stem cell researchers, Rudolf Jaenisch at the Whitehead Institute for Biomedical Research and the Massachusetts Institute of Technology.
“Our conclusion is that, in principle, stem cells can be patentable and that this is consonant with ethical views that the human embryo should enjoy special protection owing to its capacity to develop into a human being. This will be of interest to a great many people,” says Professor Mats G. Hansson.
Research on embryonic and adult stem cells may yield new possibilities for treating and curing diseases. At the same time, it is ethically controversial, especially the use of stem cells from human embryos. The possibility of patenting these cells has been excluded by several instances, including several European patent authorities and the European Commission’s European Group on Ethics (EGE). According to the EGE, only genetically altered stem cells or cells that have been further developed into certain bodily parts can be eligible for patents. In several European countries patents for stem cells are out of the question, and the European Patent Organization, like various national patent offices, has a wait-and-see policy.
“It was when I understood that people have failed to grasp that the great challenge in stem cell research lies in taking the first step-to succeed in getting the cells to survive in a culture medium-that I got the idea for the article. If the cells survive, it will be in a form that is completely different from their origin, so they should be patentable,” says Mats G. Hansson.
The great challenge for stem cell scientists is thus not primarily to alter embryonic stem cells genetically or in some other way. The difficult scientific and technological task is to get these cells to survive in a laboratory environment in the first place, outside the blastocyst cells they were taken from. To develop stem cells entails a radical modification that is achieved by altering the various environmental factors that make the cells grow-changes that irreversibly break down the protective protein casing that surround the cells’ DNA. A cell isolated from a human embryo is therefore crucially different from what it originally was.
The authors of the article thus conclude that isolated stem cells should thus be eligible for both method and product patents as long as the research meets accepted patent requirements, such as degree of invention and industrial application. As regards the scope of such patents, a conservative approach is proposed, to prevent individual patents from hampering important research, which may be the consequence of two patents granted in the U.S., with extremely broad exclusive rights.
Anneli Waara | alfa
Further information:
http://stemcells.alphamedpress.org/papbyrecent.dtl
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics
Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme
Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
World's smallest optical implantable biodevice
26.04.2018 | Power and Electrical Engineering
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | Life Sciences
First Li-Fi-product with technology from Fraunhofer HHI launched in Japan
26.04.2018 | Power and Electrical Engineering