Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovarian Cancer May Mimic Fallopian Tube Formation

08.03.2007
A new study suggests that ovarian cancer cells form by hijacking a developmental genetic process normally used to form fallopian tubes.
Scientists at the Georgia Institute of Technology and the Ovarian Cancer Institute discovered that the protein, PAX8, is involved in the development of fallopian tubes and is present in ovarian cancer cells, but not in normal ovarian tissue. The discovery not only provides a new target for diagnostic and therapeutic interventions, but also opens new avenues for basic research in ovarian cancer pathology. The research appears in Volume 104, Issue 3 of the journal Gynecologic Oncology.

"Our finding sustains the promise of a molecular genetic understanding of different cancers and emphasizes the importance of describing cancer in the context of normal human development that has gone awry due to genetic and epigenetic alterations,” said Nathan Bowen, Georgia Cancer Coalition Distinguished Cancer Scientist at Georgia Tech and the Ovarian Cancer Institute (OCI).

Using cancerous and non-cancerous tissue straight from the operating room, Bowen and fellow OCI researchers are engaged in investigating the molecular profile of ovarian cancer tissue in order to discover the causes of ovarian cancer, develop a reliable diagnostic blood test and understand the genetic basis of resistance to chemotherapy.

In 2003, a group from Stanford University researching breast cancer discovered that paired box gene 8 is expressed in ovarian cancer tissue, but not in breast cancer. Taking note of the Stanford group’s results, OCI researchers began to investigate the possibility that the gene and its products may be an important biomarker for detecting and researching the causes of ovarian cancer. They began to look for evidence of PAX8, the protein made by paired box gene 8, which was the next step in establishing the gene as a biomarker. Not only did they find PAX8 in the ovarian cancer cells, but they also found it in the cells that form fallopian tubes, the secretory cells. In addition, they discovered that the protein is not expressed in the normal ovarian surface epithelium.

... more about:
»OCI »PAX8 »fallopian »ovarian »ovarian cancer

Bowen proposes that ovarian cancer begins by using PAX8 to direct an adult stem cell population found on the ovarian surface to proliferate and ultimately form ovarian cancer. When this gene is turned on in an embryo, it leads to the development of fallopian tubes. When the gene is expressed in healthy adult ovarian cells that migrate into the body of the ovary, it leads to the development of ovarian inclusion cysts. Normally, the growth of cysts is kept in check by the cells’ feedback mechanisms that turn off cell growth. But in cancer, when these feedback mechanisms are mutated, the cysts grow out of control until they metastasize.

"It’s a way of molecularly characterizing tumors that may lead to designing specific therapies based on the molecular profile,” said Bowen. “Biology is basically an information processing system to generate end products, and there are a lot of decisions that have to be made by the regulatory genes, like paired box gene 8, before the end products can be made.

Bowen’s next steps are to find out why paired box gene 8 gets turned on and to discover its targets in order to find out of it turns on another decision-making gene or an endpoint gene.

"That’s the daunting task of cancer biologists,” he said. “Now that we've sequenced the human genome, we have to make sense out of the thousands of genes that are expressed in cancer at the same time.”

This research was supported by grants from the Georgia Cancer Coalition and a gift in remembrance of Josephine Crawford Robinson for support of the Ovarian Cancer Institute Laboratory.

The Ovarian Cancer Institute (OCI) was founded by gynecologic oncologist Benedict Benigno in 1999. The OCI’s laboratory moved to Georgia Tech in 2004 and currently has researchers located at Emory University, the University of Georgia, Georgia State University, Clark Atlanta University and the Medical College of Georgia. The lab is headed by John McDonald, professor and chair of the School of Biology at Georgia Tech and chief scientific officer at the OCI.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: OCI PAX8 fallopian ovarian ovarian cancer

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>