Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovarian Cancer May Mimic Fallopian Tube Formation

08.03.2007
A new study suggests that ovarian cancer cells form by hijacking a developmental genetic process normally used to form fallopian tubes.
Scientists at the Georgia Institute of Technology and the Ovarian Cancer Institute discovered that the protein, PAX8, is involved in the development of fallopian tubes and is present in ovarian cancer cells, but not in normal ovarian tissue. The discovery not only provides a new target for diagnostic and therapeutic interventions, but also opens new avenues for basic research in ovarian cancer pathology. The research appears in Volume 104, Issue 3 of the journal Gynecologic Oncology.

"Our finding sustains the promise of a molecular genetic understanding of different cancers and emphasizes the importance of describing cancer in the context of normal human development that has gone awry due to genetic and epigenetic alterations,” said Nathan Bowen, Georgia Cancer Coalition Distinguished Cancer Scientist at Georgia Tech and the Ovarian Cancer Institute (OCI).

Using cancerous and non-cancerous tissue straight from the operating room, Bowen and fellow OCI researchers are engaged in investigating the molecular profile of ovarian cancer tissue in order to discover the causes of ovarian cancer, develop a reliable diagnostic blood test and understand the genetic basis of resistance to chemotherapy.

In 2003, a group from Stanford University researching breast cancer discovered that paired box gene 8 is expressed in ovarian cancer tissue, but not in breast cancer. Taking note of the Stanford group’s results, OCI researchers began to investigate the possibility that the gene and its products may be an important biomarker for detecting and researching the causes of ovarian cancer. They began to look for evidence of PAX8, the protein made by paired box gene 8, which was the next step in establishing the gene as a biomarker. Not only did they find PAX8 in the ovarian cancer cells, but they also found it in the cells that form fallopian tubes, the secretory cells. In addition, they discovered that the protein is not expressed in the normal ovarian surface epithelium.

... more about:
»OCI »PAX8 »fallopian »ovarian »ovarian cancer

Bowen proposes that ovarian cancer begins by using PAX8 to direct an adult stem cell population found on the ovarian surface to proliferate and ultimately form ovarian cancer. When this gene is turned on in an embryo, it leads to the development of fallopian tubes. When the gene is expressed in healthy adult ovarian cells that migrate into the body of the ovary, it leads to the development of ovarian inclusion cysts. Normally, the growth of cysts is kept in check by the cells’ feedback mechanisms that turn off cell growth. But in cancer, when these feedback mechanisms are mutated, the cysts grow out of control until they metastasize.

"It’s a way of molecularly characterizing tumors that may lead to designing specific therapies based on the molecular profile,” said Bowen. “Biology is basically an information processing system to generate end products, and there are a lot of decisions that have to be made by the regulatory genes, like paired box gene 8, before the end products can be made.

Bowen’s next steps are to find out why paired box gene 8 gets turned on and to discover its targets in order to find out of it turns on another decision-making gene or an endpoint gene.

"That’s the daunting task of cancer biologists,” he said. “Now that we've sequenced the human genome, we have to make sense out of the thousands of genes that are expressed in cancer at the same time.”

This research was supported by grants from the Georgia Cancer Coalition and a gift in remembrance of Josephine Crawford Robinson for support of the Ovarian Cancer Institute Laboratory.

The Ovarian Cancer Institute (OCI) was founded by gynecologic oncologist Benedict Benigno in 1999. The OCI’s laboratory moved to Georgia Tech in 2004 and currently has researchers located at Emory University, the University of Georgia, Georgia State University, Clark Atlanta University and the Medical College of Georgia. The lab is headed by John McDonald, professor and chair of the School of Biology at Georgia Tech and chief scientific officer at the OCI.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: OCI PAX8 fallopian ovarian ovarian cancer

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>