Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bloodomics discovers new platelet receptors. Platelet activity accelerates in presence of succinate

08.03.2007
Bloodomics, a research project funded within the EU Framework Programme 6, whose aim is to find genetic markers for the prediction of thrombus formation in coronary artery disease, announces the discovery of previously unknown platelet receptors by comparative transcriptome analysis.

Functional characterization of SUCNR1, a G-protein coupled receptor with succinate as its specific ligand, suggests that SUCNR1 is part of a novel and physiologically relevant agonist pathway in platelet activation.

“The Bloodomics discovery is very important, as it helps us understand links between platelets and clot formation”, explains Dr. Willem Ouwehand, Bloodomics Project Coordinator and Director of Research and Planning of the ECGF (European Cardiovascular Genetics Foundation). “Now we are trying to understand the impact this and other novel receptors have on the development of heart disease, with the ultimate aim to better prevent heart disease in the future.”

To identify previously unknown platelet receptors Bloodomics compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays.

... more about:
»SUCNR1 »platelet »receptor »succinate

Bioinformatical analysis of MK upregulated genes identified 151 transcripts encoding transmembrane domain containing proteins. Whilst many of these were known platelet genes, a number of previously unidentified, or poorly characterized, transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2 and the G-protein coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function.

Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells the researchers demonstrated that G6b, G6f and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells.

The identification of the succinate receptor SUCNR1 in platelets is of particular interest, as physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

BLOODOMICS

The Bloodomics project aims at discovering genetic markers for the prediction of thrombus formation in coronary artery disease and at designing better anti-thrombotics for improved prevention and treatment. The Bloodomics project focuses on the genetics and cell biology of platelets, since it hypothesizes that the response of platelets to plaque rupture is critical in determining whether thrombus formation will lead to arterial blood vessel occlusion.

Silvia Novembre | alfa
Further information:
http://www.bloodomics.org

Further reports about: SUCNR1 platelet receptor succinate

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>