Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bloodomics discovers new platelet receptors. Platelet activity accelerates in presence of succinate

08.03.2007
Bloodomics, a research project funded within the EU Framework Programme 6, whose aim is to find genetic markers for the prediction of thrombus formation in coronary artery disease, announces the discovery of previously unknown platelet receptors by comparative transcriptome analysis.

Functional characterization of SUCNR1, a G-protein coupled receptor with succinate as its specific ligand, suggests that SUCNR1 is part of a novel and physiologically relevant agonist pathway in platelet activation.

“The Bloodomics discovery is very important, as it helps us understand links between platelets and clot formation”, explains Dr. Willem Ouwehand, Bloodomics Project Coordinator and Director of Research and Planning of the ECGF (European Cardiovascular Genetics Foundation). “Now we are trying to understand the impact this and other novel receptors have on the development of heart disease, with the ultimate aim to better prevent heart disease in the future.”

To identify previously unknown platelet receptors Bloodomics compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays.

... more about:
»SUCNR1 »platelet »receptor »succinate

Bioinformatical analysis of MK upregulated genes identified 151 transcripts encoding transmembrane domain containing proteins. Whilst many of these were known platelet genes, a number of previously unidentified, or poorly characterized, transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2 and the G-protein coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function.

Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells the researchers demonstrated that G6b, G6f and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells.

The identification of the succinate receptor SUCNR1 in platelets is of particular interest, as physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

BLOODOMICS

The Bloodomics project aims at discovering genetic markers for the prediction of thrombus formation in coronary artery disease and at designing better anti-thrombotics for improved prevention and treatment. The Bloodomics project focuses on the genetics and cell biology of platelets, since it hypothesizes that the response of platelets to plaque rupture is critical in determining whether thrombus formation will lead to arterial blood vessel occlusion.

Silvia Novembre | alfa
Further information:
http://www.bloodomics.org

Further reports about: SUCNR1 platelet receptor succinate

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>