Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bloodomics discovers new platelet receptors. Platelet activity accelerates in presence of succinate

08.03.2007
Bloodomics, a research project funded within the EU Framework Programme 6, whose aim is to find genetic markers for the prediction of thrombus formation in coronary artery disease, announces the discovery of previously unknown platelet receptors by comparative transcriptome analysis.

Functional characterization of SUCNR1, a G-protein coupled receptor with succinate as its specific ligand, suggests that SUCNR1 is part of a novel and physiologically relevant agonist pathway in platelet activation.

“The Bloodomics discovery is very important, as it helps us understand links between platelets and clot formation”, explains Dr. Willem Ouwehand, Bloodomics Project Coordinator and Director of Research and Planning of the ECGF (European Cardiovascular Genetics Foundation). “Now we are trying to understand the impact this and other novel receptors have on the development of heart disease, with the ultimate aim to better prevent heart disease in the future.”

To identify previously unknown platelet receptors Bloodomics compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays.

... more about:
»SUCNR1 »platelet »receptor »succinate

Bioinformatical analysis of MK upregulated genes identified 151 transcripts encoding transmembrane domain containing proteins. Whilst many of these were known platelet genes, a number of previously unidentified, or poorly characterized, transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2 and the G-protein coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function.

Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells the researchers demonstrated that G6b, G6f and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells.

The identification of the succinate receptor SUCNR1 in platelets is of particular interest, as physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

BLOODOMICS

The Bloodomics project aims at discovering genetic markers for the prediction of thrombus formation in coronary artery disease and at designing better anti-thrombotics for improved prevention and treatment. The Bloodomics project focuses on the genetics and cell biology of platelets, since it hypothesizes that the response of platelets to plaque rupture is critical in determining whether thrombus formation will lead to arterial blood vessel occlusion.

Silvia Novembre | alfa
Further information:
http://www.bloodomics.org

Further reports about: SUCNR1 platelet receptor succinate

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>