Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the (sound) track of anesthetics

07.03.2007
Danish scientists challenge the accepted scientific views of how nerves function and of how anesthetics work. Their research suggests that action of nerves is based on sound pulses and that anesthetics inhibit their transmission.

Every medical and biological textbook says that nerves function by sending electrical impulses along their length. "But for us as physicists, this cannot be the explanation. The physical laws of thermodynamics tell us that electrical impulses must produce heat as they travel along the nerve, but experiments find that no such heat is produced," says associate professor Thomas Heimburg from the Niels Bohr Institute at Copenhagen University.

He received his Ph.D. from the Max Planck Institute in Göttingen, Germany, where biologists and physicists often work together – at most institutions these disciplines are worlds apart. Thomas Heimburg is an expert in biophysics, and when he came to Copenhagen, he met professor Andrew D. Jackson, who is an expert in theoretical physics. They decided to work together in order to study the basic mechanisms which govern the way nerves work.

Physics explains biology

... more about:
»Physicists »anesthetics »propagate

Nerves are 'wrapped' in a membrane composed of lipids and proteins. According to the traditional explanation of molecular biology, a pulse is sent from one end of the nerve to the other with the help of electrically charged salts that pass through ion channels in the membrane. It has taken many years to understand this complicated process, and a number of the scientists involved in the task have been awarded the Nobel Prize for their efforts. But – according to the physicists – the fact that the nerve pulse does not produce heat contradicts the molecular biological theory of an electrical impulse produced by chemical processes. Instead, nerve pulses can be explained much more simply as a mechanical pulse according to the two physicists. And such a pulse could be sound. Normally, sound propagates as a wave that spreads out and becomes weaker and weaker. If, however, the medium in which the sound propagates has the right properties, it is possible to create localized sound pulses, known as "solitons", which propagate without spreading and without changing their shape or losing their strength.

The membrane of the nerve is composed of lipids, a material that is similar to olive oil. This material can change its state from liquid to solid with temperature. The freezing point of water can be lowered by the addition of salt. Likewise, molecules that dissolve in membranes can lower the freezing point of membranes. The scientists found that the nerve membrane has a freezing point, which is precisely suited to the propagation of these concentrated sound pulses. Their theoretical calculations lead them to the same conclusion: Nerve pulses are sound pulses.

Anesthetized by sound

How can one anesthetize a nerve so that feel ceases and it is possible to operate on a patient without pain? It has been known for more than 100 years that substances like ether, laughing gas, chloroform, procaine and the noble gas xenon can serve as anesthetics. The molecules of these substances have very different sizes and chemical properties, but experience shows that their doses are strictly determined by their solubility in olive oil. Current expertise is so advanced that it is possible to calculate precisely how much of a given material is required for the patient. In spite of this, no one knows precisely how anesthetics work. How are the nerves "turned off"? Starting from their theory that nerve signals are sound pulses, Thomas Heimburg and Andrew D.

Jackson turned their attention to anesthesia. The chemical properties of anesthetics are all so different, but their effects are all the same - curious!

But the curious turned out to be simple. If a nerve is to be able to transport sound pulses and send signals along the nerve, its membrane must have the property that its melting point is sufficiently close to body temperature and responds appropriately to changes in pressure. The effect of anesthetics is simply to change the melting point – and when the melting point has been changed, sound pulses cannot propagate. The nerve is put on stand-by, and neither nerve pulses nor sensations are transmitted. The patient is anesthetized and feels nothing.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.biophysj.org/cgi/rapidpdf/biophysj.106.099754v1
http://arxiv.org/PS_cache/physics/pdf/0610/0610147.pdf

Further reports about: Physicists anesthetics propagate

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>