Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the (sound) track of anesthetics

07.03.2007
Danish scientists challenge the accepted scientific views of how nerves function and of how anesthetics work. Their research suggests that action of nerves is based on sound pulses and that anesthetics inhibit their transmission.

Every medical and biological textbook says that nerves function by sending electrical impulses along their length. "But for us as physicists, this cannot be the explanation. The physical laws of thermodynamics tell us that electrical impulses must produce heat as they travel along the nerve, but experiments find that no such heat is produced," says associate professor Thomas Heimburg from the Niels Bohr Institute at Copenhagen University.

He received his Ph.D. from the Max Planck Institute in Göttingen, Germany, where biologists and physicists often work together – at most institutions these disciplines are worlds apart. Thomas Heimburg is an expert in biophysics, and when he came to Copenhagen, he met professor Andrew D. Jackson, who is an expert in theoretical physics. They decided to work together in order to study the basic mechanisms which govern the way nerves work.

Physics explains biology

... more about:
»Physicists »anesthetics »propagate

Nerves are 'wrapped' in a membrane composed of lipids and proteins. According to the traditional explanation of molecular biology, a pulse is sent from one end of the nerve to the other with the help of electrically charged salts that pass through ion channels in the membrane. It has taken many years to understand this complicated process, and a number of the scientists involved in the task have been awarded the Nobel Prize for their efforts. But – according to the physicists – the fact that the nerve pulse does not produce heat contradicts the molecular biological theory of an electrical impulse produced by chemical processes. Instead, nerve pulses can be explained much more simply as a mechanical pulse according to the two physicists. And such a pulse could be sound. Normally, sound propagates as a wave that spreads out and becomes weaker and weaker. If, however, the medium in which the sound propagates has the right properties, it is possible to create localized sound pulses, known as "solitons", which propagate without spreading and without changing their shape or losing their strength.

The membrane of the nerve is composed of lipids, a material that is similar to olive oil. This material can change its state from liquid to solid with temperature. The freezing point of water can be lowered by the addition of salt. Likewise, molecules that dissolve in membranes can lower the freezing point of membranes. The scientists found that the nerve membrane has a freezing point, which is precisely suited to the propagation of these concentrated sound pulses. Their theoretical calculations lead them to the same conclusion: Nerve pulses are sound pulses.

Anesthetized by sound

How can one anesthetize a nerve so that feel ceases and it is possible to operate on a patient without pain? It has been known for more than 100 years that substances like ether, laughing gas, chloroform, procaine and the noble gas xenon can serve as anesthetics. The molecules of these substances have very different sizes and chemical properties, but experience shows that their doses are strictly determined by their solubility in olive oil. Current expertise is so advanced that it is possible to calculate precisely how much of a given material is required for the patient. In spite of this, no one knows precisely how anesthetics work. How are the nerves "turned off"? Starting from their theory that nerve signals are sound pulses, Thomas Heimburg and Andrew D.

Jackson turned their attention to anesthesia. The chemical properties of anesthetics are all so different, but their effects are all the same - curious!

But the curious turned out to be simple. If a nerve is to be able to transport sound pulses and send signals along the nerve, its membrane must have the property that its melting point is sufficiently close to body temperature and responds appropriately to changes in pressure. The effect of anesthetics is simply to change the melting point – and when the melting point has been changed, sound pulses cannot propagate. The nerve is put on stand-by, and neither nerve pulses nor sensations are transmitted. The patient is anesthetized and feels nothing.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.biophysj.org/cgi/rapidpdf/biophysj.106.099754v1
http://arxiv.org/PS_cache/physics/pdf/0610/0610147.pdf

Further reports about: Physicists anesthetics propagate

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>