Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The social life of honeybees coordinated by a single gene

07.03.2007
Students of the evolution of social behavior got a big boost with the publication of the newly sequenced honeybee genome in October 2006. The honeybee (Apis mellifera) belongs to the rarified cadre of insects that pool resources, divide tasks, and communicate with each other in highly structured colonies. Understanding how this advanced state of organization evolved from a solitary lifestyle has been an enduring question in biology.

In a new study published in PLoS Biology, Mindy Nelson, Kate Ihle, Gro Amdam, and colleagues reveal one possible path to community by showing that a single gene controls multiple traits related to honeybee sociability. First characterized for its role in reproduction, the gene, vitellogenin, is widely found in egg-laying insects, which depend on it for egg cell development.

A honeybee’s lot in life depends on its age, gender, and caste. Reproduction falls to the queen and drones, while essentially infertile females, the workers, perform all the other duties required to support the colony. As young adults, workers tend larvae and perform assorted tasks in the hive. After about three weeks, they switch from domestic chores to foraging, and eventually specialize in pollen or nectar collection.

Scientists began to suspect that the protein synthesized from the vitellogenin gene—vitellogenin—might affect these social life history traits in honeybees as it became clear that the protein supported an array of functions not directly linked to egg-laying. For example, sterile workers synthesize vitellogenin to make the royal jelly they feed larvae. It can also prolong the lifespan of both workers and the queen by reducing oxidative stress.

... more about:
»foraging »honeybee »hormone »juvenile »nectar »vitellogenin

As bees undergo the complex behavioral shift demanded by the change in job description, their physiology changes too: they have higher levels of juvenile hormone and lower levels of vitellogenin. It was speculated that these two physiological factors repress each other to affect the bees’ behavior, with vitellogenin repressing juvenile hormone in younger bees to inhibit the shift from nest to field, and juvenile hormone repressing vitellogenin in bees that have switched to foraging to ensure that they stay true to their task and do not revert to nest jobs. In a previous study, the researchers also proposed that changes in vitellogenin gene expression early in life could foster the selective behavior that creates the division of labor between pollen and nectar specialists.

To test these proposed roles of vitellogenin in coordinating the social life of the honeybee, Nelson et al. inhibited the expression of the vitellogenin gene with RNA interference (RNAi). This gene-silencing tool introduces a double-stranded RNA (dsRNA) product whose sequence is complementary to a target gene, thereby setting off a series of events that ultimately “knocks down” the target gene. The researchers injected a vitellogenin dsRNA preparation into the abdomen of a subset of bees and compared their behavior and lifespan to a control group. (The control group also received a dsRNA treatment designed to mimic the stress of experimental handling without affecting gene expression.) The bees’ vitellogenin levels were monitored at 10 days, 15 days, and 20 days old to make sure the RNAi effects persisted.

Compared to controls, dsRNA-treated bees had consistently lower levels of vitellogenin protein. These vitellogenin “knockdowns” started foraging at a younger age than controls—confirming that vitellogenin affects workers’ occupational fate by repressing the shift from domestic to foraging tasks. The foragers also showed a preference for nectar, in keeping with evidence that workers genetically predisposed toward nectar have lower vitellogenin levels before leaving the nest, while those predisposed toward pollen have higher levels. But more directly, the researchers argue, these results show that vitellogenin controls social foraging specialization. What’s more, the vitellogenin-deficient bees died earlier than the controls, demonstrating the protein’s influence on honeybee longevity.

Altogether, these results demonstrate that vitellogenin regulates the organizational structure of honeybee society by influencing workers’ division of labor and foraging preference. Vitellogenin, the researchers conclude, controls not only when bees start foraging and how long they live, but what they forage. Higher levels early in life favor pollen; lower levels favor nectar. Since current methods cannot yet distinguish the effects of vitellogenin from those of juvenile hormone, the researchers argue that the two physiological factors should be considered as partners in mediating task assignment and specialization. Since this partnership is uncommon in insects, it suggests that social behavior in honeybees emerged from a makeover of relations between vitellogenin and juvenile hormone. It also bolsters the notion that factors normally in control of female reproduction can lay the foundation for the transition from solitary life to complex social behavior.

Natalie Bouaravong | EurekAlert!
Further information:
http://www.plos.org
http://www.plosbiology.org

Further reports about: foraging honeybee hormone juvenile nectar vitellogenin

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>