Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover gene essencial to cerebellum formation

07.03.2007
A study published this week in the scientific journal PNAS provides new information on the origin of different cells in the cerebellum, an important component of the central nervous system found in all vertebrates, including humans, and the part of the brain that controls movement.

The study was completed by researchers from the Institute for Research in Biomedicine (IRB Barcelona), the Department of Cell Biology of the University of Barcelona (UB), the IMIM-Hospital del Mar, Pompeu Fabra University (UPF) and Vanderbilt University (Nashville, Tennessee, USA). The main authors of the study are Dr. Marta Pascual (IRB Barcelona and UB) and Ibane Abasolo (IMIM-Hospital del Mar-UPF).

Co-author of the study, Francisco X. Real, coordinator of the Research Unit on Cell and Molecular Biology at IMIM-Hospital del Mar and Professor at the UPF, explains that “this discovery sheds new light on the mechanisms of brain formation and has potential future applications for regenerative medicine. It provides crucial insight into the manipulation of truncal nerve cells (or stem cells) and their selective differentiation into ‘gabergic’ neurons, or cells that contain the neurotransmitter gamma-aminobutyric acid (GABA) and that act as inhibitors.

Eduardo Soriano, Principal Investigator of the Developmental Neurobiology and Regeneration laboratory at IRB Barcelona, and professor at the UB, maintains that the study explains two important principles: first, “that the protein Ptf1a/p48 is needed for the production and differentiation of Purkinje neurons, the most important cells in the cerebellum”; and second, “that in the absence of this protein, the progenitor cells that should produce Purkinje neurons do not differentiate correctly and instead produce a different type of neuron, granular cells, indicating that Ptf1a/p48 acts as a molecular switch.”

... more about:
»Neuron »Purkinje »cerebellum

The researchers hypothesized that a transcription factor, whose function is well known in the pancreas and which appears to play a role in the nervous system, is also involved in the development of the cerebellum. In order to test their idea, and characterize the new mechanism of cell differentation, the authors used mice with a disactivated gene that codes for the Ptf1a/48 protein, and compared them with mice that express the gene normally. Their conclusions provide new insight into origin of nerve cells that form the cerebellum in higher organisms.

In a second research project, led by Francisco Real and Eduardo Soriano and funded by the Fundació La Caixa, the scientists aim to explore the potential of this gene to produce Purkinje neurons in a laboratory setting. The researchers will investigate whether the expression of Ptf1a/p48 can induce the production of Purkinje cells from stem cells and neurospheres, progenitor cells of adult neurons. This study is an important step toward understanding rare diseases, such as cerebellar ataxias, which is characterized by the degeneration of Purkinje cells. Producing this type of cell in the lab may lead to future neuronal replacement therapy.

Sonia Armengou | alfa
Further information:
http://www.pcb.ub.es

Further reports about: Neuron Purkinje cerebellum

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>