Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rickettsia felis, a cat-flea–borne pathogen, sheds light on Rickettsial evolution

VBI researchers in collaboration with scientists from the University of Maryland School of Medicine have created a new classification system for rickettsia bacteria that may assist researchers in the way they approach the development of diagnostics and vaccines for the virulent rickettsial pathogens. The work has been carried out as part of the PathoSystems Resource Integration Center (PATRIC) project which is led by Dr. Bruno Sobral and Dr. João Setubal from the Virginia Bioinformatics Institute.

Some species of Rickettsia are known to cause harmful diseases in humans, such as epidemic typhus (R. prowazekii) and Rocky Mountain spotted fever (R. rickettsii), while others have been identified as emerging pathogens and critical agents for the development of bioweapons. The Rickettsia felis bacterium has in some cases been linked to the onset of typhus-like disease in humans. Until now, it has been difficult to fit R. felis into the evolutionary picture of the rickettsia in part due to the presence of a “hard to classify” plasmid or gene-carrying element not found in the other rickettsiae.

Dr. Joseph Gillespie, a bioinformatician at the Virginia Bioinformatics Institute and the lead author of the paper, remarked: “By comparing sequences and using bioinformatic tools, we have been able to demonstrate that there is indeed strong support for the presence of a single plasmid in R. felis, and that many of the plasmid genes have probably been horizontally inherited from exchanges with other organisms. We have also been able to go one step further and show that the primitive rickettsial ancestor itself likely harbored plasmids of this type which has important implications for the evolutionary origin of the group.”

The traditional rickettsial classification system divides members of the genus into three categories – spotted fever group, typhus group, and ancestral group. However, the genome sequence of R. felis shows inconsistencies that could place it in either the spotted fever or typhus groups. The new classification system highlighted in the study includes the addition of a fourth lineage—transitional group rickettsia—that provides a framework to support some of the known evolutionary relationships of these diverse bacteria. Specifically, the results offer insight into the evolution of a plastic plasmid system in rickettsiae, which includes the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial evolutionary tree.

... more about:
»PATRIC »Plasmid »Rickettsia »felis »rickettsial

VBI Director and PATRIC Principal Investigator Bruno Sobral remarked: “The role plasmids play in host colonization and virulence is not well understood, and will likely only become more apparent with the discovery of plasmids in other rickettsiae. We hope that an evolutionary perspective coupled with the characterization of the contributions of these plasmids to host recognition, invasion and pathogenicity will open up exciting new research opportunities for the virulent rickettsiae. One of the goals of the PATRIC project is to enable the future development of much needed diagnostics and vaccines for a wide range of diseases. The research described in this study is a good example of how developments in evolutionary classification, for example, can help facilitate the objectives of the PATRIC project.”

VBI researchers Joseph Gillespie, Joshua Shallom, Anjan Purkayastha, and Bruno Sobral, along with University of Maryland colleagues Magda Beier, Mohammed S. Rahman, Nicole C. Ammerman, and Abdu F. Azad (PATRIC organism expert and senior author) contributed to the paper, “Plasmids and Rickettsial Evolution: Insight from Rickettsia felis.” The paper will be featured in the March 7, 2007 edition of the online publication PLoS ONE.

Andrew Hyde | alfa
Further information:

Further reports about: PATRIC Plasmid Rickettsia felis rickettsial

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>