Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about fatty tissue that burns fat

07.03.2007
In an article now being published in the leading American journal PNAS, a research team led by Barbara Cannon and Jan Nedergaard at the Wenner-Gren Institute, Stockholm University in Sweden, together with British and American scientists, have managed to show for the first time that the cells that become the so-called brown or white fat tissue already know from the very beginning what sort of fat tissue they will be.

Humans and other mammals have two sorts of fatty tissue ¬- white and brown. The white fat tissue is what is usually regarded as 'fat,' the kind many people feel they have too much of. The brown tissue, on the other hand, is a fatty tissue whose job is to burn fat, so that the energy is converted to heat either to keep us (as newborns) warm, or to balance an excessive energy intake.

"This is an answer to many years of discussion in the field, where two views have been put forward: that the cells can have two different fates, brown or white, or that they were predetermined to be one or the other, as this study now shows. An additional and highly unexpected finding was that it could be demonstrated that the very young cells that were to become brown fat cells had characteristics similar to those of young muscle cells," says Barbara Cannon, professor of physiology at the Wenner-Gren Institute, Stockholm University.

The discovery explains to some extent the property that primarily distinguishes brown fat from white fat, namely, its ability to use energy, which is something a muscle cell does in order to work.

... more about:
»Cannon »HDL-cholesterol »Wenner-Gren

Since there is an interest in being able to make use of the potential of brown fat to burn fat and thereby to perhaps help make fat people slim or primarily to counteract the development of obesity in the first place, this discovery is not only of significance in terms of our basic understanding of cell development.

"Our findings do not exclude the possibility of influencing young cells to develop in one direction or the other. It also seems as if there are dormant brown fat cells within the body that could be stimulated to develop and become active, fat-burning cells. Normally adult humans are seen as having rather little brown fat tissue, but new studies using new technologies are starting to challenge this view. We see new potential for understanding the mechanisms that make cells develop into different tissues. And new knowledge always paves the way for new possibilities," says Barbara Cannon.

For further information:
Barbara Cannon, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4120; cell phone: +46 (0)70-750 0198; e-mail: barbara.cannon@wgi.su.se
Jan Nedergaard, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4128; cell phone: +46 (0)70-4948955; e-mail: jan@metabol.su.se

James A. Timmons, professor of exercise biology, Heriot Watt University, phone: +44 (0)131 451 4193; cell phone: +44 (0)7833992862; e-mail: J.Timmons@hw.ac.uk

Maria Sandqvist | idw
Further information:
http://www.vr.se

Further reports about: Cannon HDL-cholesterol Wenner-Gren

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>