Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about fatty tissue that burns fat

07.03.2007
In an article now being published in the leading American journal PNAS, a research team led by Barbara Cannon and Jan Nedergaard at the Wenner-Gren Institute, Stockholm University in Sweden, together with British and American scientists, have managed to show for the first time that the cells that become the so-called brown or white fat tissue already know from the very beginning what sort of fat tissue they will be.

Humans and other mammals have two sorts of fatty tissue ¬- white and brown. The white fat tissue is what is usually regarded as 'fat,' the kind many people feel they have too much of. The brown tissue, on the other hand, is a fatty tissue whose job is to burn fat, so that the energy is converted to heat either to keep us (as newborns) warm, or to balance an excessive energy intake.

"This is an answer to many years of discussion in the field, where two views have been put forward: that the cells can have two different fates, brown or white, or that they were predetermined to be one or the other, as this study now shows. An additional and highly unexpected finding was that it could be demonstrated that the very young cells that were to become brown fat cells had characteristics similar to those of young muscle cells," says Barbara Cannon, professor of physiology at the Wenner-Gren Institute, Stockholm University.

The discovery explains to some extent the property that primarily distinguishes brown fat from white fat, namely, its ability to use energy, which is something a muscle cell does in order to work.

... more about:
»Cannon »HDL-cholesterol »Wenner-Gren

Since there is an interest in being able to make use of the potential of brown fat to burn fat and thereby to perhaps help make fat people slim or primarily to counteract the development of obesity in the first place, this discovery is not only of significance in terms of our basic understanding of cell development.

"Our findings do not exclude the possibility of influencing young cells to develop in one direction or the other. It also seems as if there are dormant brown fat cells within the body that could be stimulated to develop and become active, fat-burning cells. Normally adult humans are seen as having rather little brown fat tissue, but new studies using new technologies are starting to challenge this view. We see new potential for understanding the mechanisms that make cells develop into different tissues. And new knowledge always paves the way for new possibilities," says Barbara Cannon.

For further information:
Barbara Cannon, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4120; cell phone: +46 (0)70-750 0198; e-mail: barbara.cannon@wgi.su.se
Jan Nedergaard, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4128; cell phone: +46 (0)70-4948955; e-mail: jan@metabol.su.se

James A. Timmons, professor of exercise biology, Heriot Watt University, phone: +44 (0)131 451 4193; cell phone: +44 (0)7833992862; e-mail: J.Timmons@hw.ac.uk

Maria Sandqvist | idw
Further information:
http://www.vr.se

Further reports about: Cannon HDL-cholesterol Wenner-Gren

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>