New discovery about fatty tissue that burns fat

Humans and other mammals have two sorts of fatty tissue ¬- white and brown. The white fat tissue is what is usually regarded as 'fat,' the kind many people feel they have too much of. The brown tissue, on the other hand, is a fatty tissue whose job is to burn fat, so that the energy is converted to heat either to keep us (as newborns) warm, or to balance an excessive energy intake.

“This is an answer to many years of discussion in the field, where two views have been put forward: that the cells can have two different fates, brown or white, or that they were predetermined to be one or the other, as this study now shows. An additional and highly unexpected finding was that it could be demonstrated that the very young cells that were to become brown fat cells had characteristics similar to those of young muscle cells,” says Barbara Cannon, professor of physiology at the Wenner-Gren Institute, Stockholm University.

The discovery explains to some extent the property that primarily distinguishes brown fat from white fat, namely, its ability to use energy, which is something a muscle cell does in order to work.

Since there is an interest in being able to make use of the potential of brown fat to burn fat and thereby to perhaps help make fat people slim or primarily to counteract the development of obesity in the first place, this discovery is not only of significance in terms of our basic understanding of cell development.

“Our findings do not exclude the possibility of influencing young cells to develop in one direction or the other. It also seems as if there are dormant brown fat cells within the body that could be stimulated to develop and become active, fat-burning cells. Normally adult humans are seen as having rather little brown fat tissue, but new studies using new technologies are starting to challenge this view. We see new potential for understanding the mechanisms that make cells develop into different tissues. And new knowledge always paves the way for new possibilities,” says Barbara Cannon.

For further information:
Barbara Cannon, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4120; cell phone: +46 (0)70-750 0198; e-mail: barbara.cannon@wgi.su.se
Jan Nedergaard, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4128; cell phone: +46 (0)70-4948955; e-mail: jan@metabol.su.se

James A. Timmons, professor of exercise biology, Heriot Watt University, phone: +44 (0)131 451 4193; cell phone: +44 (0)7833992862; e-mail: J.Timmons@hw.ac.uk

Media Contact

Maria Sandqvist idw

More Information:

http://www.vr.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors