Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New discovery about fatty tissue that burns fat

In an article now being published in the leading American journal PNAS, a research team led by Barbara Cannon and Jan Nedergaard at the Wenner-Gren Institute, Stockholm University in Sweden, together with British and American scientists, have managed to show for the first time that the cells that become the so-called brown or white fat tissue already know from the very beginning what sort of fat tissue they will be.

Humans and other mammals have two sorts of fatty tissue ¬- white and brown. The white fat tissue is what is usually regarded as 'fat,' the kind many people feel they have too much of. The brown tissue, on the other hand, is a fatty tissue whose job is to burn fat, so that the energy is converted to heat either to keep us (as newborns) warm, or to balance an excessive energy intake.

"This is an answer to many years of discussion in the field, where two views have been put forward: that the cells can have two different fates, brown or white, or that they were predetermined to be one or the other, as this study now shows. An additional and highly unexpected finding was that it could be demonstrated that the very young cells that were to become brown fat cells had characteristics similar to those of young muscle cells," says Barbara Cannon, professor of physiology at the Wenner-Gren Institute, Stockholm University.

The discovery explains to some extent the property that primarily distinguishes brown fat from white fat, namely, its ability to use energy, which is something a muscle cell does in order to work.

... more about:
»Cannon »HDL-cholesterol »Wenner-Gren

Since there is an interest in being able to make use of the potential of brown fat to burn fat and thereby to perhaps help make fat people slim or primarily to counteract the development of obesity in the first place, this discovery is not only of significance in terms of our basic understanding of cell development.

"Our findings do not exclude the possibility of influencing young cells to develop in one direction or the other. It also seems as if there are dormant brown fat cells within the body that could be stimulated to develop and become active, fat-burning cells. Normally adult humans are seen as having rather little brown fat tissue, but new studies using new technologies are starting to challenge this view. We see new potential for understanding the mechanisms that make cells develop into different tissues. And new knowledge always paves the way for new possibilities," says Barbara Cannon.

For further information:
Barbara Cannon, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4120; cell phone: +46 (0)70-750 0198; e-mail:
Jan Nedergaard, professor of physiology, Wenner-Gren Institute, phone: +46 (0)8-16 4128; cell phone: +46 (0)70-4948955; e-mail:

James A. Timmons, professor of exercise biology, Heriot Watt University, phone: +44 (0)131 451 4193; cell phone: +44 (0)7833992862; e-mail:

Maria Sandqvist | idw
Further information:

Further reports about: Cannon HDL-cholesterol Wenner-Gren

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>