Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA researchers identify new adherence factor, Pili, produced by tuberculosis

06.03.2007
Discovery may lead scientists to develop new TB therapies

Researchers at The University of Arizona College of Medicine’s Department of Immunobiology have discovered that the agent that causes tuberculosis (TB), Mycobacterium tuberculosis, produces a new type of virulence factor called Mycobacterium Tuberculosis Pili (MTP). Their findings suggest that MTP could be a promising, new TB-vaccine candidate.

The study, "Mycobacterium tuberculosis produces pili during human infection," published in the Proceedings of the National Academy of Sciences, Volume 104, March 5-9, 2007, could spur further scientific investigations on TB, which is the No. 1 cause of bacterial infectious disease in the world today. Worldwide, 3 million people die each year from tuberculosis and an estimated 1.2 billion are infected with the bacteria.

Virulence factors, such as MTP, are essential for causing disease in the host. Pili, also called fimbriae, are hair-like adhesive structures that facilitate the initial attachment and subsequent colonization of bacteria on human cells during bacterial infections.

... more about:
»MTP »PhD »Tuberculosis »pili »produce

Many other bacteria that cause human disease produce similar adhesive factors known as pili or fimbriae that play a critical role in allowing infections to develop in the patient. This is the first report of pili being produced by M. tuberculosis.

"Tuberculosis remains the most devastating bacterial cause of human mortality today. Despite improved diagnosis, surveillance, and treatment regimens, the incidence of TB increases annually. The ability to combat this deadly pathogen hinges on the dissection and understanding of the mechanisms of pathogenesis for M. tuberculosis," writes Christopher Alteri, PhD, a former UA graduate student who is principal author on this study.

This important work was part of his dissertation research at the UA under the direction of Richard L. Friedman, PhD, professor of immunobiology. Dr. Alteri now is a postdoctoral fellow at the University of Michigan Medical School. Jorge A. Girón, PhD, UA assistant professor of immunobiology, and Juan Xicohténcatal, PhD, his postdoctoral fellow, collaborated on this study.

If M. tuberculosis pili are important for the bacillus to establish infections in humans, as with other microbes, then MTP could be considered an attractive new TB vaccine candidate, according to the study. Presently, there is a great need to develop more effective immunization strategies against this devastating disease.

Focusing on the pili adhesive factor produced by M. tuberculosis, which may enable the bacillus to colonize and grow within the human host, the UA experiments demonstrated that when the gene for pili is inactivated, the bacteria do not bind as well to host surface cell proteins, said Dr. Friedman. Serum from TB patients was found to have antibodies to MTP, which indicates that the pili are produced by the bacteria during human infection.

While most tuberculosis infections and deaths occur in Africa, Asia and India, the United States has experienced recent outbreaks. "AIDS patients, who do not have intact immune systems, are highly susceptible to TB infection. This is a major reason for the worldwide increase in the incidence of TB. This increase also is associated with poverty, the growing numbers of homeless, alcohol- and drug-abusing populations, as well as with the emergence of multi-drug resistant strains of M. tuberculosis. Such strains constitute a very serious public health problem because they cannot be treated with any of the most commonly used anti-tuberculosis antibiotics, resulting in high mortality and rates of transmission," said Dr. Friedman.

Katie Maass | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: MTP PhD Tuberculosis pili produce

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>