Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA researchers identify new adherence factor, Pili, produced by tuberculosis

06.03.2007
Discovery may lead scientists to develop new TB therapies

Researchers at The University of Arizona College of Medicine’s Department of Immunobiology have discovered that the agent that causes tuberculosis (TB), Mycobacterium tuberculosis, produces a new type of virulence factor called Mycobacterium Tuberculosis Pili (MTP). Their findings suggest that MTP could be a promising, new TB-vaccine candidate.

The study, "Mycobacterium tuberculosis produces pili during human infection," published in the Proceedings of the National Academy of Sciences, Volume 104, March 5-9, 2007, could spur further scientific investigations on TB, which is the No. 1 cause of bacterial infectious disease in the world today. Worldwide, 3 million people die each year from tuberculosis and an estimated 1.2 billion are infected with the bacteria.

Virulence factors, such as MTP, are essential for causing disease in the host. Pili, also called fimbriae, are hair-like adhesive structures that facilitate the initial attachment and subsequent colonization of bacteria on human cells during bacterial infections.

... more about:
»MTP »PhD »Tuberculosis »pili »produce

Many other bacteria that cause human disease produce similar adhesive factors known as pili or fimbriae that play a critical role in allowing infections to develop in the patient. This is the first report of pili being produced by M. tuberculosis.

"Tuberculosis remains the most devastating bacterial cause of human mortality today. Despite improved diagnosis, surveillance, and treatment regimens, the incidence of TB increases annually. The ability to combat this deadly pathogen hinges on the dissection and understanding of the mechanisms of pathogenesis for M. tuberculosis," writes Christopher Alteri, PhD, a former UA graduate student who is principal author on this study.

This important work was part of his dissertation research at the UA under the direction of Richard L. Friedman, PhD, professor of immunobiology. Dr. Alteri now is a postdoctoral fellow at the University of Michigan Medical School. Jorge A. Girón, PhD, UA assistant professor of immunobiology, and Juan Xicohténcatal, PhD, his postdoctoral fellow, collaborated on this study.

If M. tuberculosis pili are important for the bacillus to establish infections in humans, as with other microbes, then MTP could be considered an attractive new TB vaccine candidate, according to the study. Presently, there is a great need to develop more effective immunization strategies against this devastating disease.

Focusing on the pili adhesive factor produced by M. tuberculosis, which may enable the bacillus to colonize and grow within the human host, the UA experiments demonstrated that when the gene for pili is inactivated, the bacteria do not bind as well to host surface cell proteins, said Dr. Friedman. Serum from TB patients was found to have antibodies to MTP, which indicates that the pili are produced by the bacteria during human infection.

While most tuberculosis infections and deaths occur in Africa, Asia and India, the United States has experienced recent outbreaks. "AIDS patients, who do not have intact immune systems, are highly susceptible to TB infection. This is a major reason for the worldwide increase in the incidence of TB. This increase also is associated with poverty, the growing numbers of homeless, alcohol- and drug-abusing populations, as well as with the emergence of multi-drug resistant strains of M. tuberculosis. Such strains constitute a very serious public health problem because they cannot be treated with any of the most commonly used anti-tuberculosis antibiotics, resulting in high mortality and rates of transmission," said Dr. Friedman.

Katie Maass | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: MTP PhD Tuberculosis pili produce

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>