Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer-designed molecule to clean up fluorocarbons?

The chemical bond between carbon and fluorine is one of the strongest in nature, and has been both a blessing and a curse in the complex history of fluorocarbons. Now, in a powerful demonstration of the relatively new field of "computational chemistry," researchers at the National Institute of Standards and Technology (NIST) and the Interdisciplinary Network of Emerging Science and Technology group (INEST, sponsored by Philip Morris USA) have designed—in a computer—a wholly theoretical molecule to pull the fluorine out of fluorocarbons.*

At sea level, the strong C-F bond makes fluorocarbons thermally and chemically stable. As a result, fluorocarbons have been used in many commercial applications including refrigerants, pesticides and non-stick coatings. In the upper atmosphere, however, high-energy photons and highly reactive ozone molecules can break apart fluorocarbons, with the well-known consequence of a depleted ozone layer and increased ultraviolet radiation at ground level. A determined chemist can break down fluorocarbons at ground level with certain organometallic compounds, but the reactions take a long time at very high temperatures. Other known reagents are both highly toxic and inefficient, so chemists have been searching for an economical and environmentally friendly method to dispose of fluorocarbons.

Reasoning that the problem already may have been solved by nature, the NIST/Philip Morris team looked to an enzyme called fluoroacetate dehalogenase used by a South African bacterium, Burkholderia sp. The enzyme enables the bacterium to pull the fluoride ion out of sodium fluoroacetate (disrupting a poisonous compound) at room temperature and without problematic metal ions. Enzymes are giant molecules, evolved to survive and work in the complex environment of a living organism; they can be difficult and expensive to adapt to an industrial process. Instead, the research team applied basic quantum mechanical theory of electron structures in molecules, together with the example of a known molecule that binds to and extracts chlorine ions, to calculate the make-up and geometry of the critical "active site" in the enzyme that does the work. They then designed in software a large ring-shaped molecule to hold those components in just the right orientation to break the C-F bond in methyl fluoride, a simple fluorocarbon.

Researchers at the University of Texas now are synthesizing the new molecule to test its effectiveness. If it matches theoretical predictions, it will be the first example of a simple organic molecular system able to break C-F bonds without extreme temperature and pressure conditions, and a demonstration of a novel technique for designing man-made molecules that can mimic the extraordinary selectivity and chemical activity of natural enzymes. Notes lead researcher Carlos Gonzalez, "All of these useful things are in nature, you just have to find them and make them more efficient."

Michael Baum | EurekAlert!
Further information:

Further reports about: Ion Molecule fluorocarbon

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>