Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic study reveals how endocrine cell types are produced in the pancreas

06.03.2007
An international research team has identified the process by which pancreatic progenitor cells give rise to different endocrine cell types.

This work, published March 6, 2007 in the journal Developmental Cell, sheds new light on the mechanism by which insulin-producing beta cells are generated in the pancreas, and may open the door to new treatment avenues for type 1 diabetes.

The pancreas plays a critical role in our ability to convert food into fuel. Type 1 diabetes is a chronic (lifelong) disease in which beta cells in the pancreas lose their ability to produce the amounts of insulin needed to control blood sugar levels. Those afflicted suffer reduced quality of life and risk life-threatening complications from the disease. This form of diabetes usually strikes children and young adults, although disease onset can occur at any age. Type 1 diabetes accounts for 5 percent to 10 percent of all diagnosed cases of diabetes and has no cure. Insulin injections provide treatment, but their effectiveness is limited.

One possible avenue for treatment would be to restore the insulin-producing cells in the pancreas. But relatively little is known about how the body produces these cells during development and how the cells are regenerated in adults. Scientists do know that all pancreatic endocrine cells, including insulin-producing beta cells, arise from a single line of “progenitor cells” that express the gene Neurogenin 3.

The experiments carried out by researchers from the Swiss Institute for Experimental Cancer Research and EPFL, in collaboration with INSERM and Vanderbilt University, used transgenic mice to explore the stages by which the different endocrine cell types, including insulin-producing beta cells, are produced from the progenitor cells. They showed that the trigger causing progenitor cells to switch from generating one cell type to generating another does not require signals from cells surrounding the progenitors.

By pinpointing the mechanisms involved in the different stages of endocrine cell production, this work sheds new light on when and how insulin-producing beta cells are generated in the pancreas. These experiments should help the future identification of a molecule responsible for the ability to generate beta cells, and might lead to techniques to restore these cells in individuals with type 1 diabetes.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

Further reports about: Endocrine beta insulin-producing pancreas progenitor

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>