Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study rewrites evolutionary history of vespid wasps

05.03.2007
Scientists at the University of Illinois have conducted a genetic analysis of vespid wasps that revises the vespid family tree and challenges long-held views about how the wasps’ social behaviors evolved.

In the study, published in the Feb. 21 Proceedings of the National Academy of Sciences, the researchers found genetic evidence that eusociality (the reproductive specialization seen in some insects and other animals) evolved independently in two groups of vespid wasps.

These findings contradict an earlier model of vespid wasp evolution, which placed the groups together in a single lineage with a common ancestor.

Eusocial behavior is quite rare, and generally involves the breeding of different reproductive classes within a colony. The sterile members of the group perform tasks that support their fertile counterparts. Eusociality occurs in only a few species of insects, rodents, crustaceans and other arthropods.

The evolution of eusociality in wasps has long been a source of debate, said U. of I. entomology graduate student Heather Hines and entomology professor Sydney Cameron, who is the principal investigator of the study. A prior model of vespid wasp evolution placed three subfamilies of wasps – the Polistinae, Vespinae and Stenogastrinae – together in a single evolutionary group with a common ancestor. This model did not rely on a genetic analysis of the wasps, but instead classified them according to several physical and behavioral traits.

Cameron’s team included University of Missouri biology professor James H. Hunt, an expert on the evolution of social behavior in the vespid wasps. Hunt observed that many behavioral characteristics of the vespid wasps contradicted this model of the vespid family tree.

Hunt’s observations, along with those of other behavioral experts in the field, prompted the new analysis.

Instead of affirming a linear, step-wise evolution of social behavior from solitary to highly social, Cameron said, her team’s analysis shows that the Polistinae and Vespinae wasp subfamilies evolved their eusocial characteristics separately from the eusocial Stenogastrinae subfamily of vespid wasps.

Experts on vespid wasp behavior have long noted the significant behavioral differences between the Stenogastrinae subfamily and the group that includes Polistinae and Vespinae. And others have tried, unsuccessfully, to challenge the earlier non-genetic model of vespid wasp evolution. In 1998, German researchers J. Schmitz and R. Moritz also used a genetic analysis to propose that the subfamily Stenogastrinae was evolutionarily distinct from the Polistinae and Vespinae subfamilies.

Proponents of the non-genetic model criticized their work, however, because it relied on an analysis of less than 600 base pairs from two genes (one ribosomal RNA, the other mitochondrial DNA) and included very few representative species, some of which were unsuitable for the analysis.

The new study examined variations in fragments of four genes across 30 species of vespid wasps. Four independent statistical analyses tested the reliability of the pattern of relationships that emerged from the data.

This work confirms the ideas of Schmitz and Moritz, said Cameron, by adding to the weight of evidence that their hypothesis was accurate.

The fact that eusociality evolved independently in two groups of vespid wasps also sheds light on the complexity of evolutionary processes, Cameron said.

“Scientists attempt to make generalizations and simplify the world. But the world isn’t always simple and evolution isn’t simple. This finding points to the complexity of life.”

Editor’s note: To reach Sydney Cameron, call 217-333-2340; e-mail: sacamero@uiuc.edu.

Diana Yates | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Analysis Evolutionary Polistinae Stenogastrinae Vespinae vespid

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>