Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Individuals and populations differ in gene activity levels, not just genes

05.03.2007
Much like how a person's genetic code differs from other individuals, the level at which those genes are activated in the body differs from one person to another, scientists have learned. And though some of those differences in gene activity are seen between different populations – Asians versus Europeans, for instance – more of those variations are due to individual-level factors, further obscuring the biological meaning of "race."

The findings could also have major implications for medical research, as differing levels of gene activity may affect one's susceptibility to developing a disease or one's response to a particular drug. The research was conducted at the University of Washington, and was led by Joshua Akey, assistant professor of genome sciences, and John Storey, associate professor of genome sciences and of biostatistics. Their findings appear in the March issue of the American Journal of Human Genetics.

"This is exactly what makes drug development so difficult, or why it's so hard to pinpoint an exact cause for a particular disease," said Akey. "People have so much variation both in their genetic information and in how those genes are activated and regulated. We need to have a much better understanding of human genetic and gene-expression variation in order to better treat complex diseases and develop more effective drugs."

The researchers examined data on thousands of genes from 16 people of European and African ancestry, cataloging the variations between those individuals. They studied each person's levels of gene expression, which measures how much a particular gene is activated during the process of translating DNA into a substance called RNA, and from that into basic proteins. The more a gene is expressed, the more "messenger" RNA is produced, leading to formation of more proteins corresponding to that gene. Those proteins are the building blocks that make up living cells and tissue.

... more about:
»Genetic »Variation »activity

"The difference between genetic information and gene expression is like the difference between computer hardware, which are the genes themselves, and computer software, which tells the computer what to do on the hardware," explained Storey. "We looked at what's happening inside the body, beyond what's hard-wired into the genes."

Scientists have known for many years about genetic variation, in which individual letters in the genetic code change between individuals and between different populations. However, this study is one of the first to look at the variation in gene activity between individuals and populations.

The researchers found many differences in gene-expression levels, and that about 17 percent of those differences were due to population-level differences. The vast majority of the gene-expression variation was due to random differences between individuals, and was not tied to ancestral population or biological "race."

"It's important to remember that differences between population groups are much less abundant than those you would see if you just compared two randomly selected individuals," said Storey. "This means that populations have a lot more similarities than differences when it comes to gene expression."

Their findings may help us better understand how human populations are structured and interrelated, and could also help explain evolutionary development of humans from our ancient ancestors to present day. The research may also help us understand why some people are more susceptible than others to complex genetic diseases.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Genetic Variation activity

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>