Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Individuals and populations differ in gene activity levels, not just genes

05.03.2007
Much like how a person's genetic code differs from other individuals, the level at which those genes are activated in the body differs from one person to another, scientists have learned. And though some of those differences in gene activity are seen between different populations – Asians versus Europeans, for instance – more of those variations are due to individual-level factors, further obscuring the biological meaning of "race."

The findings could also have major implications for medical research, as differing levels of gene activity may affect one's susceptibility to developing a disease or one's response to a particular drug. The research was conducted at the University of Washington, and was led by Joshua Akey, assistant professor of genome sciences, and John Storey, associate professor of genome sciences and of biostatistics. Their findings appear in the March issue of the American Journal of Human Genetics.

"This is exactly what makes drug development so difficult, or why it's so hard to pinpoint an exact cause for a particular disease," said Akey. "People have so much variation both in their genetic information and in how those genes are activated and regulated. We need to have a much better understanding of human genetic and gene-expression variation in order to better treat complex diseases and develop more effective drugs."

The researchers examined data on thousands of genes from 16 people of European and African ancestry, cataloging the variations between those individuals. They studied each person's levels of gene expression, which measures how much a particular gene is activated during the process of translating DNA into a substance called RNA, and from that into basic proteins. The more a gene is expressed, the more "messenger" RNA is produced, leading to formation of more proteins corresponding to that gene. Those proteins are the building blocks that make up living cells and tissue.

... more about:
»Genetic »Variation »activity

"The difference between genetic information and gene expression is like the difference between computer hardware, which are the genes themselves, and computer software, which tells the computer what to do on the hardware," explained Storey. "We looked at what's happening inside the body, beyond what's hard-wired into the genes."

Scientists have known for many years about genetic variation, in which individual letters in the genetic code change between individuals and between different populations. However, this study is one of the first to look at the variation in gene activity between individuals and populations.

The researchers found many differences in gene-expression levels, and that about 17 percent of those differences were due to population-level differences. The vast majority of the gene-expression variation was due to random differences between individuals, and was not tied to ancestral population or biological "race."

"It's important to remember that differences between population groups are much less abundant than those you would see if you just compared two randomly selected individuals," said Storey. "This means that populations have a lot more similarities than differences when it comes to gene expression."

Their findings may help us better understand how human populations are structured and interrelated, and could also help explain evolutionary development of humans from our ancient ancestors to present day. The research may also help us understand why some people are more susceptible than others to complex genetic diseases.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Genetic Variation activity

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>