Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists expand microbe 'gene language'

05.03.2007
An international group of scientists has expanded the universal language for the genes of both disease-causing and beneficial microbes and their hosts. This expanded "lingua franca," called The Gene Ontology (GO), gives researchers a common set of terms to describe the interactions between a microbe and its host.

The Plant-Associated Microbe Gene Ontology (PAMGO) consortium and the GO consortium staff at the European Bioinformatics Institute approved and released more than 450 new terms for describing gene products involved in microbe-host interactions.

The National Science Foundation (NSF) and the USDA's Cooperative State Research, Education and Extension Service (CSREES) support the PAMGO project through grants from their joint Microbial Genome Sequencing program.

This new "common terminology" will speed development of new technologies for preventing infections by disease-causing microbes, while preserving or encouraging the presence of beneficial microbes. Scientists say the Gene Ontology will provide a powerful tool for comparing the functions of genes and proteins in a wide range of disease-related organisms.

... more about:
»Host »Ontology »PAMGO »beneficial »microbe

"A common set of terms for exchange of information about microbe-host interactions will help researchers communicate information, and expand concepts from studies of microbes and their hosts," says Maryanna Henkart, director of NSF's Division of Molecular and Cellular Biology.

Microbes that associate with plants or animals can be pathogenic, neutral, or beneficial, but all share many common processes in their interactions with their hosts. For example, all must initially attach to the host. PAMGO, from the beginning, tailored the new terms so they would be useful for describing both benign and pathogenic microbes in plant or animal hosts.

"Having a common set of terms to describe genes of pathogenic and beneficial microbes, as well as the organisms they come into contact with, is critical to understanding host-microbe-environment interactions," said Brett Tyler, PAMGO project leader at the Virginia Bioinformatics Institute (VBI) in Blacksburg, Va.

Many of the early GO terms described biological functions and processes found in microbes, but very few described the functions used by microbes in their associations with hosts. PAMGO started by creating terms to describe how microbes interact with plants, but researchers soon discovered that almost all the terms were also relevant to microbes that interact with animals and humans.

The Gene Ontology Consortium was organized so all users can actively contribute to the ongoing refinement of the terms. When scientists submit new terms to PAMGO, the entire community participates to synthesize a common understanding of how microbes associate with hosts.

The PAMGO consortium is a collaboration between VBI, Cornell University, North Carolina State University, the University of Wisconsin-Madison, The Institute for Genomic Research (a division of the J.C. Venter Institute) and Wells College. The group works closely with the Gene Ontology Consortium.

PAMGO is working on gene ontology terms for host-association functions of the bacterial pathogens Erwinia chrysanthemi, Pseudomonas syringae pv tomato and Agrobacterium tumefaciens, the fungus Magnaporthe grisea, the oomycetes Phytophthora sojae and Phytophthora ramorum, and the nematode Meloidogyne hapla.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: Host Ontology PAMGO beneficial microbe

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>