Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists expand microbe 'gene language'

05.03.2007
An international group of scientists has expanded the universal language for the genes of both disease-causing and beneficial microbes and their hosts. This expanded "lingua franca," called The Gene Ontology (GO), gives researchers a common set of terms to describe the interactions between a microbe and its host.

The Plant-Associated Microbe Gene Ontology (PAMGO) consortium and the GO consortium staff at the European Bioinformatics Institute approved and released more than 450 new terms for describing gene products involved in microbe-host interactions.

The National Science Foundation (NSF) and the USDA's Cooperative State Research, Education and Extension Service (CSREES) support the PAMGO project through grants from their joint Microbial Genome Sequencing program.

This new "common terminology" will speed development of new technologies for preventing infections by disease-causing microbes, while preserving or encouraging the presence of beneficial microbes. Scientists say the Gene Ontology will provide a powerful tool for comparing the functions of genes and proteins in a wide range of disease-related organisms.

... more about:
»Host »Ontology »PAMGO »beneficial »microbe

"A common set of terms for exchange of information about microbe-host interactions will help researchers communicate information, and expand concepts from studies of microbes and their hosts," says Maryanna Henkart, director of NSF's Division of Molecular and Cellular Biology.

Microbes that associate with plants or animals can be pathogenic, neutral, or beneficial, but all share many common processes in their interactions with their hosts. For example, all must initially attach to the host. PAMGO, from the beginning, tailored the new terms so they would be useful for describing both benign and pathogenic microbes in plant or animal hosts.

"Having a common set of terms to describe genes of pathogenic and beneficial microbes, as well as the organisms they come into contact with, is critical to understanding host-microbe-environment interactions," said Brett Tyler, PAMGO project leader at the Virginia Bioinformatics Institute (VBI) in Blacksburg, Va.

Many of the early GO terms described biological functions and processes found in microbes, but very few described the functions used by microbes in their associations with hosts. PAMGO started by creating terms to describe how microbes interact with plants, but researchers soon discovered that almost all the terms were also relevant to microbes that interact with animals and humans.

The Gene Ontology Consortium was organized so all users can actively contribute to the ongoing refinement of the terms. When scientists submit new terms to PAMGO, the entire community participates to synthesize a common understanding of how microbes associate with hosts.

The PAMGO consortium is a collaboration between VBI, Cornell University, North Carolina State University, the University of Wisconsin-Madison, The Institute for Genomic Research (a division of the J.C. Venter Institute) and Wells College. The group works closely with the Gene Ontology Consortium.

PAMGO is working on gene ontology terms for host-association functions of the bacterial pathogens Erwinia chrysanthemi, Pseudomonas syringae pv tomato and Agrobacterium tumefaciens, the fungus Magnaporthe grisea, the oomycetes Phytophthora sojae and Phytophthora ramorum, and the nematode Meloidogyne hapla.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: Host Ontology PAMGO beneficial microbe

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>