Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers wake up viruses inside tumors to image and then destroy cancers

Researchers have found a way to activate Epstein-Barr viruses inside tumors as a way to identify patients whose infection can then be manipulated to destroy their tumors. They say this strategy could offer a novel way of treating many cancers associated with Epstein-Barr, including at least four different types of lymphoma and nasopharyngeal and gastric cancers.

In the March 1 issue of Clinical Cancer Research, a team of radiologists and oncologists from Johns Hopkins Medical Institutions describe how they used two agents already on the market − one of which is the multiple myeloma drug Velcade − to light up tumor viruses on a gamma camera. The technique is the first in the new field of in vivo molecular-genetic imaging that doesn't require transfecting tumors with a "reporter" gene, the scientists say.

"The beauty of this is that you don't have to introduce any reporter genes into the tumor because they are already there," says radiologist Martin G. Pomper, M.D., Ph.D. "This is the only example we know of where it is possible to image activated endogenous gene expression without having to transfect cells."

A variety of blood and solid cancers are more likely to occur in people who have been infected with the Epstein-Barr virus (EBV), but not everyone with these cancers has such infections. For those who do, researchers, such as Hopkins oncologist and co-author Richard F. Ambinder, M.D., Ph.D., have been working on ways to activate the reproductive, or "lytic" cycle, within the virus to make it replicate within the tumor cell. When enough viral particles are produced, the tumor will burst, releasing the virus. In animal experiments, this experimental therapy, called lytic induction therapy, results in tumor death.

As the first step in this study, researchers screened a wide variety of drugs to see if any of them could reawaken the virus. They were fortunate in that one of the genes that is expressed upon viral lytic induction is EBV's thymidine kinase (EBV-TK), an enzyme that helps the virus begin to reproduce. This kinase is of interest because researchers know its "sister" kinase, the one produced by the herpes simplex virus, can be imaged by an injected radiolabeled chemical (FIAU), which can then be imaged using a gamma camera.

"To perform molecular-genetic imaging, we have always had to infect cells with active herpes simplex virus so that they can replicate, express TK, and only then could we use the FIAU tracer to make the cells light up," Pomper says. "So we were hoping to find a way to turn latent Epstein-Barr virus on in these cancers, and use the thymidine kinase it then produces to enable us to see the virus-associated tumors with radiolabeled FIAU."

The researchers screened 2,700 agents until they hit upon Velcade, a targeted chemotherapy drug already approved for use in multiple myeloma. "We were both surprised and lucky," he says. "Velcade is a proteasome inhibitor, but it also induces the lytic cycle thereby activating the TK in the Epstein-Barr virus. Once the TK is activated, we can image the tumors."

To test their findings, the researchers used mice carrying human Burkitt's lymphoma, a cancer often associated with Epstein-Barr viral infection. Tumors glowed in mice given Velcade followed by an injection of FIAU, but not in mice that weren't given Velcade. Mice whose Burkitt's lymphoma did not contain Epstein-Barr virus also did not respond to either Velcade or FIAU, according to researchers.

"Velcade woke up the virus in the tumors, which increased viral load by 12-fold, all the while cranking out TK," Pomper says. "An injection of FIAU made it easy to image the tumors with virus in them."

The method is highly sensitive, he says: as few as five percent of the cells within the tumor mass needed to be induced into the lytic cycle in order to be detected.

Not only can FIAU light up the tumors, it can also potentially kill them, Pomper says. For imaging purposes, FIAU can carry a radionuclide that emits a low energy gamma photon, but it can also be engineered to carry therapeutic radionuclides, which are lethal to cells in which TK is activated.

Results of this study suggests that this strategy could be applied to other viruses associated with tumors, and that other drugs may potentially be used to activate these viruses, Pomper says. "Velcade is only one of an array of new, as well as older agents, that can induce lytic infection, and a particular agent could be tailored for use in a specific patient through imaging," he says.

Greg Lester | EurekAlert!
Further information:

Further reports about: Epstein-Barr Epstein-Barr virus FIAU Kinase Pomper VELCADE lytic

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>