Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers wake up viruses inside tumors to image and then destroy cancers

05.03.2007
Researchers have found a way to activate Epstein-Barr viruses inside tumors as a way to identify patients whose infection can then be manipulated to destroy their tumors. They say this strategy could offer a novel way of treating many cancers associated with Epstein-Barr, including at least four different types of lymphoma and nasopharyngeal and gastric cancers.

In the March 1 issue of Clinical Cancer Research, a team of radiologists and oncologists from Johns Hopkins Medical Institutions describe how they used two agents already on the market − one of which is the multiple myeloma drug Velcade − to light up tumor viruses on a gamma camera. The technique is the first in the new field of in vivo molecular-genetic imaging that doesn't require transfecting tumors with a "reporter" gene, the scientists say.

"The beauty of this is that you don't have to introduce any reporter genes into the tumor because they are already there," says radiologist Martin G. Pomper, M.D., Ph.D. "This is the only example we know of where it is possible to image activated endogenous gene expression without having to transfect cells."

A variety of blood and solid cancers are more likely to occur in people who have been infected with the Epstein-Barr virus (EBV), but not everyone with these cancers has such infections. For those who do, researchers, such as Hopkins oncologist and co-author Richard F. Ambinder, M.D., Ph.D., have been working on ways to activate the reproductive, or "lytic" cycle, within the virus to make it replicate within the tumor cell. When enough viral particles are produced, the tumor will burst, releasing the virus. In animal experiments, this experimental therapy, called lytic induction therapy, results in tumor death.

As the first step in this study, researchers screened a wide variety of drugs to see if any of them could reawaken the virus. They were fortunate in that one of the genes that is expressed upon viral lytic induction is EBV's thymidine kinase (EBV-TK), an enzyme that helps the virus begin to reproduce. This kinase is of interest because researchers know its "sister" kinase, the one produced by the herpes simplex virus, can be imaged by an injected radiolabeled chemical (FIAU), which can then be imaged using a gamma camera.

"To perform molecular-genetic imaging, we have always had to infect cells with active herpes simplex virus so that they can replicate, express TK, and only then could we use the FIAU tracer to make the cells light up," Pomper says. "So we were hoping to find a way to turn latent Epstein-Barr virus on in these cancers, and use the thymidine kinase it then produces to enable us to see the virus-associated tumors with radiolabeled FIAU."

The researchers screened 2,700 agents until they hit upon Velcade, a targeted chemotherapy drug already approved for use in multiple myeloma. "We were both surprised and lucky," he says. "Velcade is a proteasome inhibitor, but it also induces the lytic cycle thereby activating the TK in the Epstein-Barr virus. Once the TK is activated, we can image the tumors."

To test their findings, the researchers used mice carrying human Burkitt's lymphoma, a cancer often associated with Epstein-Barr viral infection. Tumors glowed in mice given Velcade followed by an injection of FIAU, but not in mice that weren't given Velcade. Mice whose Burkitt's lymphoma did not contain Epstein-Barr virus also did not respond to either Velcade or FIAU, according to researchers.

"Velcade woke up the virus in the tumors, which increased viral load by 12-fold, all the while cranking out TK," Pomper says. "An injection of FIAU made it easy to image the tumors with virus in them."

The method is highly sensitive, he says: as few as five percent of the cells within the tumor mass needed to be induced into the lytic cycle in order to be detected.

Not only can FIAU light up the tumors, it can also potentially kill them, Pomper says. For imaging purposes, FIAU can carry a radionuclide that emits a low energy gamma photon, but it can also be engineered to carry therapeutic radionuclides, which are lethal to cells in which TK is activated.

Results of this study suggests that this strategy could be applied to other viruses associated with tumors, and that other drugs may potentially be used to activate these viruses, Pomper says. "Velcade is only one of an array of new, as well as older agents, that can induce lytic infection, and a particular agent could be tailored for use in a specific patient through imaging," he says.

Greg Lester | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: Epstein-Barr Epstein-Barr virus FIAU Kinase Pomper VELCADE lytic

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>