Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparison of immune response to 1918 and H5N1 influeza viruses shows similarities

01.03.2007
A comparison of the 1918 Spanish influenza and the H5N1 avian influenza viruses suggests that while the two viruses appear to trigger a similar abnormal immune response in animal models, there are distinct differences. Researchers from the University of Washington School of Medicine in Seattle report their findings today at the ASM Biodefense and Emerging Disease Research Meeting.

"The influenza pandemic of 1918-19 was responsible for at least 40 million deaths worldwide. Recent experiments in mouse and nonhuman primates have suggested a central role of the host immune response in 1918 and H5N1 disease severity," says John Kash, a lead researcher on the study.

Kash and his colleagues have previously published research on how the immune system responds to infection with the 1918 virus in mouse and nonhuman primate lungs, using bioinformatic tools to see what genes within the immune system are expressed in response to infection. They discovered that the virus caused an almost immediate and overwhelming immune system response that basically turned the immune systems of its victims against them.

In the current study, Kash and colleagues examined the gene expression in response to H5N1 avain influenza virus in mouse lungs and compared the immune response to the previously collected data on the 1918 influenza virus.

... more about:
»H5N1 »Kash »immune system

"It looks like both these viruses elicit some sort of overblown inflammatory response. While at a fundamental level they look very similar to each other, there are subtle distinctions," says Kash.

In studying these commonalities and differences, Kash hopes to better understand how the viruses cause disease and hopefully develop new treatments. Eventually scientists may be able to develop drugs that could turn down or even switch off the unwanted activity while still allowing the immune system to combat the infection.

"What we are trying to do is understand the similarities and differences and what they mean. If we can understand those common mechanisms, we can better develop new treatments for the disease," says Kash.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: H5N1 Kash immune system

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>