Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast and slow -- How the spinal cord controls the speed of movement

01.03.2007
Cornell research may have implications for treating human

Using a state-of-the-art technique to map neurons in the spinal cord of a larval zebrafish, Cornell University scientists have found a surprising pattern of activity that regulates the speed of the fish’s movement. The research may have long-term implications for treating injured human spinal cords and Parkinson’s disease, where movements slow down and become erratic.

The study, "A Topographic Map of Recruitment in Spinal Cord," published in the March 1 issue of the journal Nature, maps how neurons in the bottom of the fish’s spinal cord become active during slow movements, while cells further up the spinal cord activate as movements speed up.

By removing specific neurons in the lower spinal cord with laser beams, the researchers rendered the fish incapable of slow movements. By removing nerves further up the backbone, the fish had difficulty moving fast.

... more about:
»Fetcho »Researcher »Speed »brain cell »spinal

"No one had any idea that organization like this existed in a spinal cord," said Joseph Fetcho, a Cornell professor of neurobiology and behavior and an author of the study. "Now that we know the pattern, we can begin to ask how that changes in disease states."

David McLean, Cornell postdoctoral researcher in Fetcho’s laboratory, was the first person to discover the pattern of neural activation and how it was associated with speed of movement. He is the lead author on the study.

The researchers worked with 4 millimeter-long larval zebrafish (Danio rerio) because they are transparent and researchers can see their cells. Fetcho and his colleagues injected the fishes’ spinal cords with a fluorescent dye, which then lit up when calcium ions flooded in as the nerve cells activated. A confocal microscope with lasers allowed the researchers to image the cells at very high resolutions. Using this set up, they watched nerve cells light up as the animals moved at different speeds.

While no one knows how this pattern relates to other vertebrates, the research opens a door toward basic understanding of the architecture and function of nerves in spinal cords. With regard to regeneration of spinal cords following injury, for example, medical researchers need a template for a normal spinal cord in order to know if nerves are re-growing normally, Fetcho said.

In Parkinson’s disease, researchers believe that a neurotransmitter released by brain cells may contribute to activating a system of nerves and muscles that allow for faster movement. They suspect that damage to these brain cells may disrupt the release of dopamine, further complicating free movement. Fetcho and his group are building a transgenic line of fish with those brain cells labeled so they may be targeted and removed with lasers.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Fetcho Researcher Speed brain cell spinal

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>