Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast and slow -- How the spinal cord controls the speed of movement

01.03.2007
Cornell research may have implications for treating human

Using a state-of-the-art technique to map neurons in the spinal cord of a larval zebrafish, Cornell University scientists have found a surprising pattern of activity that regulates the speed of the fish’s movement. The research may have long-term implications for treating injured human spinal cords and Parkinson’s disease, where movements slow down and become erratic.

The study, "A Topographic Map of Recruitment in Spinal Cord," published in the March 1 issue of the journal Nature, maps how neurons in the bottom of the fish’s spinal cord become active during slow movements, while cells further up the spinal cord activate as movements speed up.

By removing specific neurons in the lower spinal cord with laser beams, the researchers rendered the fish incapable of slow movements. By removing nerves further up the backbone, the fish had difficulty moving fast.

... more about:
»Fetcho »Researcher »Speed »brain cell »spinal

"No one had any idea that organization like this existed in a spinal cord," said Joseph Fetcho, a Cornell professor of neurobiology and behavior and an author of the study. "Now that we know the pattern, we can begin to ask how that changes in disease states."

David McLean, Cornell postdoctoral researcher in Fetcho’s laboratory, was the first person to discover the pattern of neural activation and how it was associated with speed of movement. He is the lead author on the study.

The researchers worked with 4 millimeter-long larval zebrafish (Danio rerio) because they are transparent and researchers can see their cells. Fetcho and his colleagues injected the fishes’ spinal cords with a fluorescent dye, which then lit up when calcium ions flooded in as the nerve cells activated. A confocal microscope with lasers allowed the researchers to image the cells at very high resolutions. Using this set up, they watched nerve cells light up as the animals moved at different speeds.

While no one knows how this pattern relates to other vertebrates, the research opens a door toward basic understanding of the architecture and function of nerves in spinal cords. With regard to regeneration of spinal cords following injury, for example, medical researchers need a template for a normal spinal cord in order to know if nerves are re-growing normally, Fetcho said.

In Parkinson’s disease, researchers believe that a neurotransmitter released by brain cells may contribute to activating a system of nerves and muscles that allow for faster movement. They suspect that damage to these brain cells may disrupt the release of dopamine, further complicating free movement. Fetcho and his group are building a transgenic line of fish with those brain cells labeled so they may be targeted and removed with lasers.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Fetcho Researcher Speed brain cell spinal

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>