Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LLNL researchers review bio detection technologies

01.03.2007
In an effort to detect biological threats quickly and accurately, a number of detection technologies have been developed.

Researchers from Lawrence Livermore National Laboratory review several of the latest technologies in the most recent issue (Issue 3, 2007), of the British journal “The Analyst,” which appears online at http://www.rsc.org/Publishing/Journals/AN/Article.asp?Type=CurrentIssue.

“It’s important to provide a summary of the latest technologies and approaches for sensing systems and platforms that could lead to bioagent detectors for responders to use in the field,” said LLNL’s lead author Jeffrey Tok. Other authors include Nicholas Fischer and Theodore Tarasow of LLNL’s BioSecurity and Nanosciences Laboratory.

One technique, previously described by Tok and colleagues, involves using a barcode system, similar to the barcodes used on retail products, to detect biological agents in the field. Nanowires built from sub-micrometer layers of different metals, including gold, silver and nickel, are able to act as “barcodes” for detecting a variety of pathogens, such as anthrax, smallpox, ricin and botulinum toxin. The approach could simultaneously identify multiple pathogens via their unique fluorescent characteristics.

... more about:
»BIO »Detection »Immunoassay »sensing

Another detection strategy involves the development of electrical current-based readout of the nanowires for protein and virus sensing. The wires are arranged as field-effect transistors (FETs), where slight variations at the surface produce a change in conductivity. Developers of this technology predict that a high-density nanowire-circuit array geared toward pathogen detection could be built on a large scale suitable for biosecurity surveillance.

Physical, chemical and optical properties that can be tuned to detect a particular bioagent are key to microbead-based immunoassay sensing systems. A unique spectral signature or fingerprint can be tied to each type of bead. Beads have been joined with antibodies to specific biowarfare agents. This method has been demonstrated in the Autonomous Pathogen Detection System (APDS), a technology developed by Lawrence Livermore researchers. APDS contains an aerosol collector to constantly “inhale” particles from its surrounding environment for analysis.

Microarray-based immunoassay sensing approaches can be used to detect bacteria, such as the E. coli recently found in spinach and other fresh-packed greens. This approach can differentiate pathogens from harmless bacteria. In an analogous technique called aptamer microarray, short single strand chains of DNA (less than 100 nucleotides) are developed that bind to target molecules and fold into complex structures. The folding event results in an easy-to-read electrical charge. This binding-induced signaling strategy is particularly well suited for sensing in complex samples.

In a whole-cell-based immunoassay sensing system, an engineered B lymphocyte cell in which both pathogen-sensing membrane-bound antibodies and an associated light-emitting reporting system are all expressed in vivo. The B lymphocyte cell-based sensing system, termed CANARY, centers on an easily expressed calcium-sensitive bioluminescent protein from the Aequoria victoria jellyfish. When exposed to targeted biowarfare compounds, an increase in photons was observed within the B lymphocyte cells in a matter of seconds. The photon changes can then be easily detected using an inexpensive optical system.

“The ability to miniaturize and adapt traditional bench-top immunoassay protocols to a fully automated micro-or nano-fluidic chip holds tremendous promise to enable multiplex, efficient, cost-effective and accurate pathogen sensing systems for both biodefense and medical applications,” Tok said.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/PAO

Further reports about: BIO Detection Immunoassay sensing

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>