Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies may pave way to new treatments for age-related heart disease

01.03.2007
Humans and flies share a common gene key to heart's pacing

The tiny Drosophila fruit fly may pave the way to new methods for studying and finding treatments for heart disease, the leading cause of death in industrialized countries, according to a collaborative study by the Burnham Institute for Medical Research, UC San Diego (UCSD) and the University of Michigan.

The study reports that mutations in a molecular channel found in heart muscle cell membranes caused arrhythmias similar to those that are found in humans, suggesting that understanding how this channel’s activity is controlled in the cell could lead to new heart disease treatments. Led by Burnham’s Professor Rolf Bodmer, Ph.D., and Staff Scientist Karen Ocorr, Ph.D., these new results, to be published in Proceedings of the National Academy of Sciences, will be made available by priority publication at the journal’s website during the week of February 26, 2007.

"This study shows that the Drosophila heart can be a model for the human heart," said Burnham researcher Bodmer. "Fly hearts have many ion channels that also are present in human hearts, making it suitable to extend mechanistic insight found in the fly hearts to human heart function."

The researchers focused on a membrane channel in the tiny Drosophila heart called KCNQ. This membrane channel, found in flies and humans, regulates the heart’s ability to return to a relaxed state after beating. This ability is crucial to healthy cardiac functions, and the inability to return to a relaxed state results in arrhythmias, which can lead to more serious heart disease and sudden death. In both flies and humans, cardiac arrhythmia and dysfunctions become more common with age.

The team found that mutations in the fly’s single KCNQ gene led to severe arrhythmias that would be immediately fatal to a human, but not in this insect that does not rely on the heart for oxygen supply. Hearts in young flies with the KCNQ mutation exhibited prolonged heart contractions and irregular beats seen usually in older flies (and older people). To enable their study of the fly heart, the researchers created new methods to dissect the hearts, and quantify heart contractility and other functions by using a movie camera to capture fly’s cardiac activity.

"We started with Nick Reeves and James Posakony at UCSD, who originally made the mutant KCNQ fly for a different purpose. We then studied these mutants with the new heart function assays that Ocorr was developing in my lab. Subsequently, we worked with Martin Fink and Wayne Giles at UCSD to develop a computer program that would allow the automated quantification of heart beat parameters and arrhythmias from the video images," Bodmer said. In addition, collaborations with H.S. Vincent Chen at Burnham and Soichiro Yasuda and Joseph Metzger of the University of Michigan enabled measuring the fly’s electrocardiogram (ECG) and heartbeat force and tension, respectively.

"We now have a lot of methods to precisely assess heart function in the fly, which augments its usefulness as a genetic model for studying cardiac function," said Ocorr, who conducted most of these studies.

The study points to KCNQ as a major factor in heart disease, but Bodmer warns that much more research is needed to use it alone as a drug target. "The fact that heart functions deteriorate in the mutant flies during aging suggests that there are other channels and genes that contribute to cardiac aging," he said. "We need to better understand the regulatory systems that control the level and activity of known cardiac channels and other unknown factors involved in coordinated heart muscle contraction."

In fact, the researchers are now looking at identifying other genes that regulate KCNQ channel function and heart physiology, and—thanks to the short lifespan of Drosophila —can look at the effects of aging, which is much harder to do in mammals with a relatively long lifespan.

"There’s an amazing conservation of genes between flies and humans," Bodmer said. "We can now look at how heart function ages in a realistic timeframe."

In addition to first author Ocorr, and contributions from collaborators Reeves, Fink, Chen, Yasuda, Posakony, Giles and Metzger, Bodmer’s colleagues included Robert Wessells and Takeshi Akasaka at Burnham.

"The collaborative spirit at Burnham", said Bodmer, "greatly facilitated interactions among the researchers that brought this multidisciplinary study to fruition".

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

Further reports about: Arrhythmia Bodmer Drosophila KCNQ Mutation Ocorr cardiac heart disease heart function

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>