Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies may pave way to new treatments for age-related heart disease

01.03.2007
Humans and flies share a common gene key to heart's pacing

The tiny Drosophila fruit fly may pave the way to new methods for studying and finding treatments for heart disease, the leading cause of death in industrialized countries, according to a collaborative study by the Burnham Institute for Medical Research, UC San Diego (UCSD) and the University of Michigan.

The study reports that mutations in a molecular channel found in heart muscle cell membranes caused arrhythmias similar to those that are found in humans, suggesting that understanding how this channel’s activity is controlled in the cell could lead to new heart disease treatments. Led by Burnham’s Professor Rolf Bodmer, Ph.D., and Staff Scientist Karen Ocorr, Ph.D., these new results, to be published in Proceedings of the National Academy of Sciences, will be made available by priority publication at the journal’s website during the week of February 26, 2007.

"This study shows that the Drosophila heart can be a model for the human heart," said Burnham researcher Bodmer. "Fly hearts have many ion channels that also are present in human hearts, making it suitable to extend mechanistic insight found in the fly hearts to human heart function."

The researchers focused on a membrane channel in the tiny Drosophila heart called KCNQ. This membrane channel, found in flies and humans, regulates the heart’s ability to return to a relaxed state after beating. This ability is crucial to healthy cardiac functions, and the inability to return to a relaxed state results in arrhythmias, which can lead to more serious heart disease and sudden death. In both flies and humans, cardiac arrhythmia and dysfunctions become more common with age.

The team found that mutations in the fly’s single KCNQ gene led to severe arrhythmias that would be immediately fatal to a human, but not in this insect that does not rely on the heart for oxygen supply. Hearts in young flies with the KCNQ mutation exhibited prolonged heart contractions and irregular beats seen usually in older flies (and older people). To enable their study of the fly heart, the researchers created new methods to dissect the hearts, and quantify heart contractility and other functions by using a movie camera to capture fly’s cardiac activity.

"We started with Nick Reeves and James Posakony at UCSD, who originally made the mutant KCNQ fly for a different purpose. We then studied these mutants with the new heart function assays that Ocorr was developing in my lab. Subsequently, we worked with Martin Fink and Wayne Giles at UCSD to develop a computer program that would allow the automated quantification of heart beat parameters and arrhythmias from the video images," Bodmer said. In addition, collaborations with H.S. Vincent Chen at Burnham and Soichiro Yasuda and Joseph Metzger of the University of Michigan enabled measuring the fly’s electrocardiogram (ECG) and heartbeat force and tension, respectively.

"We now have a lot of methods to precisely assess heart function in the fly, which augments its usefulness as a genetic model for studying cardiac function," said Ocorr, who conducted most of these studies.

The study points to KCNQ as a major factor in heart disease, but Bodmer warns that much more research is needed to use it alone as a drug target. "The fact that heart functions deteriorate in the mutant flies during aging suggests that there are other channels and genes that contribute to cardiac aging," he said. "We need to better understand the regulatory systems that control the level and activity of known cardiac channels and other unknown factors involved in coordinated heart muscle contraction."

In fact, the researchers are now looking at identifying other genes that regulate KCNQ channel function and heart physiology, and—thanks to the short lifespan of Drosophila —can look at the effects of aging, which is much harder to do in mammals with a relatively long lifespan.

"There’s an amazing conservation of genes between flies and humans," Bodmer said. "We can now look at how heart function ages in a realistic timeframe."

In addition to first author Ocorr, and contributions from collaborators Reeves, Fink, Chen, Yasuda, Posakony, Giles and Metzger, Bodmer’s colleagues included Robert Wessells and Takeshi Akasaka at Burnham.

"The collaborative spirit at Burnham", said Bodmer, "greatly facilitated interactions among the researchers that brought this multidisciplinary study to fruition".

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

Further reports about: Arrhythmia Bodmer Drosophila KCNQ Mutation Ocorr cardiac heart disease heart function

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>