Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scientists discover genes that can slow cell division and may fight cancer

28.02.2007
Study could lead to ways to stop runaway cell division, halt progression of cancer

Cancer cells differ from normal cells in, among other things, the way they divide. When a normal cell complies with a signal telling it to divide, it also begins to activate a "braking system" that eventually stops cell division and returns the cell to a resting state. When that braking system is faulty, uncontrolled cell division and the growth of cancer can result. Weizmann Institute scientists studied this system of brakes, and identified a number of the genes involved.

According to the study's findings, which appeared in Nature Genetics online on February 25, aberrations in the activities of these genes are tied to certain types of cancer, as well as to the relative aggressiveness of the cancer. These insights may, in the future, lead to the development of ways to restore the brakes on runaway cell division and halt the progression of cancer.

First, the scientists mapped the network of genes that is activated in normal cells upon receiving the order to divide. The "divide!" signal comes from outside the cell in the form of a chemical called a growth factor, and it initiates a chain of events inside the cell. The genes activated in this sequence produce proteins, some of which cause cell division and others that put the brakes on that division. To find which genes were responsible, the scientists needed to sift through a huge quantity of data on genes and their activities. To cope with this monumental task, a team of Weizmann Institute researchers from diverse fields pooled their knowledge and experience: Prof. Yosef Yarden of the Biological Regulation Department, Prof. Eytan Domany of the Physics of Complex Systems Department, Prof. Uri Alon of the Molecular Cell Biology Department, and Dr. Eran Segal of the Computer Science and Applied Mathematics Department. Working with them were Prof. Gideon Rechavi of the Sheba Medical Center and researchers from the M.D. Anderson Cancer Center in Houston, Texas, headed by Prof. Gordon B. Mills.

... more about:
»Cancer »brakes »divide »scientists

This collaboration between physicists, mathematicians, computer scientists, and biologists – the sort of multidisciplinary research for which the Weizmann Institute has gained a global reputation – yielded some startling results. They found that following the receipt of the growth factor signal, cell activity takes place in a number of separate waves in which genes are turned on and off for different periods of time. In the first wave, the activity of a few genes rises for about 20 to 40 minutes. These are the genes that cause the cell to divide. In contrast, the next four waves, ranging from 40 to 240 minutes after the signal, are comprised primarily of gene activity tied to the process of halting cell division.

The scientists then focused on identifying the genes in these later waves and confirming that they do, indeed, put the brakes on cell division. Through their wide-ranging study, they found 50 genes that interfere with the genetic activities of the first wave. This braking system works by producing proteins that directly attach to the cell-division genes, hindering their activity. Yet another protein they identified works, instead, by dismantling messenger RNA carrying instructions for making cell division proteins from the genes to the cell's protein-production machinery.

In tests conducted on tissues from ovarian cancer patients, the scientists found a correlation between levels of activity in the "braking" genes, rates of survival, and the aggressiveness of the disease. These findings point the way toward the development of a personal genetic profile that might pinpoint the genetic defects responsible for each cancer and help doctors tailor a treatment fitted to each patient. Such a genetic profile can also help predict the individual progression of the disease. In the future, the identification of the exact factors causing uncontrolled cell division in different cancers might lead to the development of effective treatments for preventing or halting cancer growth.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: Cancer brakes divide scientists

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>