Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scientists discover genes that can slow cell division and may fight cancer

28.02.2007
Study could lead to ways to stop runaway cell division, halt progression of cancer

Cancer cells differ from normal cells in, among other things, the way they divide. When a normal cell complies with a signal telling it to divide, it also begins to activate a "braking system" that eventually stops cell division and returns the cell to a resting state. When that braking system is faulty, uncontrolled cell division and the growth of cancer can result. Weizmann Institute scientists studied this system of brakes, and identified a number of the genes involved.

According to the study's findings, which appeared in Nature Genetics online on February 25, aberrations in the activities of these genes are tied to certain types of cancer, as well as to the relative aggressiveness of the cancer. These insights may, in the future, lead to the development of ways to restore the brakes on runaway cell division and halt the progression of cancer.

First, the scientists mapped the network of genes that is activated in normal cells upon receiving the order to divide. The "divide!" signal comes from outside the cell in the form of a chemical called a growth factor, and it initiates a chain of events inside the cell. The genes activated in this sequence produce proteins, some of which cause cell division and others that put the brakes on that division. To find which genes were responsible, the scientists needed to sift through a huge quantity of data on genes and their activities. To cope with this monumental task, a team of Weizmann Institute researchers from diverse fields pooled their knowledge and experience: Prof. Yosef Yarden of the Biological Regulation Department, Prof. Eytan Domany of the Physics of Complex Systems Department, Prof. Uri Alon of the Molecular Cell Biology Department, and Dr. Eran Segal of the Computer Science and Applied Mathematics Department. Working with them were Prof. Gideon Rechavi of the Sheba Medical Center and researchers from the M.D. Anderson Cancer Center in Houston, Texas, headed by Prof. Gordon B. Mills.

... more about:
»Cancer »brakes »divide »scientists

This collaboration between physicists, mathematicians, computer scientists, and biologists – the sort of multidisciplinary research for which the Weizmann Institute has gained a global reputation – yielded some startling results. They found that following the receipt of the growth factor signal, cell activity takes place in a number of separate waves in which genes are turned on and off for different periods of time. In the first wave, the activity of a few genes rises for about 20 to 40 minutes. These are the genes that cause the cell to divide. In contrast, the next four waves, ranging from 40 to 240 minutes after the signal, are comprised primarily of gene activity tied to the process of halting cell division.

The scientists then focused on identifying the genes in these later waves and confirming that they do, indeed, put the brakes on cell division. Through their wide-ranging study, they found 50 genes that interfere with the genetic activities of the first wave. This braking system works by producing proteins that directly attach to the cell-division genes, hindering their activity. Yet another protein they identified works, instead, by dismantling messenger RNA carrying instructions for making cell division proteins from the genes to the cell's protein-production machinery.

In tests conducted on tissues from ovarian cancer patients, the scientists found a correlation between levels of activity in the "braking" genes, rates of survival, and the aggressiveness of the disease. These findings point the way toward the development of a personal genetic profile that might pinpoint the genetic defects responsible for each cancer and help doctors tailor a treatment fitted to each patient. Such a genetic profile can also help predict the individual progression of the disease. In the future, the identification of the exact factors causing uncontrolled cell division in different cancers might lead to the development of effective treatments for preventing or halting cancer growth.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: Cancer brakes divide scientists

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>