Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of atomic movement may influence design of pharmaceuticals

28.02.2007
Chemists at the University of Liverpool have designed a unique structure to capture the movement of atoms which may impact on future designs of pharmaceuticals

The research, funded by the Engineering and Physical Sciences Research Council (EPSRC), will further understanding of how to control chemical reactions and will influence improvements in a range of important processes from the design of biopharmaceuticals to the engineering of new catalysts, enabling scientists, for example, to develop products in more environmentally friendly ways.

The Liverpool team created a porous crystal which has 'walls' of atoms and cavities which act as containers for molecules. They used this crystal to accommodate a set of molecules as they took part in a chemical reaction similar to reactions by enzymes and proteins to regulate and keep alive living systems.

The crystal was put into a powerful X-ray diffraction machine at Daresbury laboratory, Warrington. This allowed scientists to pinpoint precisely the positions of individual atoms, providing snapshots of their movement. Because the reaction was carried out within the cavities of the crystal, the team was able to locate the positions of the atoms both before and after the reaction. This is the first time that the positions of atoms both at the beginning and the end of a chemical process have been seen.

Professor Matthew Rosseinsky explains: "To design more efficient processes which run with less waste and less energy input, scientists need a better understanding of the way in which atoms move during chemical reactions. We designed a robust structure that remained stable when a chemical reaction occurred inside its walls – a structure with an opening the same size as a single molecule of aspirin. The X-ray experiment then allowed us to see how the entire structure changed during the chemical process.

"Chemical reactions are essential in key manufacturing methods and in maintaining life in living systems and so this new research could influence the understanding of a wide range of important processes. This includes the chemical reactions involved in the production of anti-cancer drugs as well as reactions which allow biological molecules in plants and animals to convert food into energy."

Samantha Martin | EurekAlert!
Further information:
http://www.liv.ac.uk

Further reports about: Design Influence chemical reaction structure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>