Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of atomic movement may influence design of pharmaceuticals

28.02.2007
Chemists at the University of Liverpool have designed a unique structure to capture the movement of atoms which may impact on future designs of pharmaceuticals

The research, funded by the Engineering and Physical Sciences Research Council (EPSRC), will further understanding of how to control chemical reactions and will influence improvements in a range of important processes from the design of biopharmaceuticals to the engineering of new catalysts, enabling scientists, for example, to develop products in more environmentally friendly ways.

The Liverpool team created a porous crystal which has 'walls' of atoms and cavities which act as containers for molecules. They used this crystal to accommodate a set of molecules as they took part in a chemical reaction similar to reactions by enzymes and proteins to regulate and keep alive living systems.

The crystal was put into a powerful X-ray diffraction machine at Daresbury laboratory, Warrington. This allowed scientists to pinpoint precisely the positions of individual atoms, providing snapshots of their movement. Because the reaction was carried out within the cavities of the crystal, the team was able to locate the positions of the atoms both before and after the reaction. This is the first time that the positions of atoms both at the beginning and the end of a chemical process have been seen.

Professor Matthew Rosseinsky explains: "To design more efficient processes which run with less waste and less energy input, scientists need a better understanding of the way in which atoms move during chemical reactions. We designed a robust structure that remained stable when a chemical reaction occurred inside its walls – a structure with an opening the same size as a single molecule of aspirin. The X-ray experiment then allowed us to see how the entire structure changed during the chemical process.

"Chemical reactions are essential in key manufacturing methods and in maintaining life in living systems and so this new research could influence the understanding of a wide range of important processes. This includes the chemical reactions involved in the production of anti-cancer drugs as well as reactions which allow biological molecules in plants and animals to convert food into energy."

Samantha Martin | EurekAlert!
Further information:
http://www.liv.ac.uk

Further reports about: Design Influence chemical reaction structure

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>