Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover key to body's ability to detect subtle temperature changes

27.02.2007
Scientists have long known the molecular mechanisms behind most of the body’s sensing capabilities. Vision, for example, is made possible in part by rhodopsin, a pigment molecule that is extremely sensitive to light. It is involved in turning photons into electrical signals that can be decoded by the brain into visual information. But how the human body is able to sense a one-degree change in temperature has remained a mystery.

"For a long time, we didn’t know how temperature sensing was being carried out in animals," said Jie Zheng, assistant professor in the Department of Physiology and Membrane Biology at the UC Davis School of Medicine. Huge progress was made in the last decade, Zheng said, when scientists discovered four ion channels sensitive to heat and two cold-sensitive ones.

"But, it was still unclear how only six temperature-sensor channels could cover wide ranges of temperature and still discriminate subtle differences," Zheng said.

Using a novel method based on a technique first used by physicists, Zheng and his colleagues now have shown that the subunits of one channel can come together with subunits from another channel or coassemble in laboratory cell cultures to form new functioning channels. Assuming this process also happens in normal cells, it suggests a likely mechanism for the thermosensitivity seen in all animal cells, Zheng explained.

... more about:
»FRET »Ion »Zheng »coassemble »heat-sensitive »subunit

"We found that, by reassembling subunits we potentially have a lot more than six channel types responsible for the sensing of temperature," he said.

The current findings are featured on the cover of the March issue of the Journal of General Physiology and were published online today.

Ion channels are pore-forming proteins found in the membranes of cells. They have the ability to open and close, regulating the flow of charged ions and controlling the voltage gradient found between the inside and outside of every living cell.

In the current study, Zheng and his colleagues focused on a group of ion channels called transient receptor potential (TRP) channels. In all, there are more than 20 TRP channels. Zheng’s group studied four of the six channels that have been shown to be involved in sensing temperature.

Previous studies concluded that different thermosensitive TRP channel subunits did not coassemble, Zheng said. He realized, however, that there were some technical limitations to the previous work. So, he and his colleagues decided to use a technique they developed last year, called spectra FRET. Spectra FRET, or spectroscopy-based fluorescence resonance energy transfer, allows the researcher to observe interactions between different channel subunits under a microscope.

"This technique allows us to look at the channel subunit composition in real-time in live cells," Zheng said.

In the current experiments, cDNA coding for particular subunits is linked to cDNA coding for fluorescent proteins and then added to a culture of human embryonic kidney cells. The cells take up the DNA and then express the channel proteins, each now having a fluorescent protein tag. The researchers then observed the cells in the spectra FRET apparatus.

"Using spectra FRET, we were able to focus on just the signal from the plasma membrane," Zheng explained. "What we found was that the subunits of one kind of heat-sensitive channel coassembled with subunits of other heat-sensitive channels to form new channels. This means that instead of four heat-sensitive channels we have a potential of 256 heat-sensitive channels with potentially different temperature sensitivity ranges."

Zheng and his colleagues then confirmed their results using a technique called patch clamping that allowed them to record the electrical current flowing through individual open channels.

"Using these single-molecule recordings, we see many different channel types," Zheng said. The next question we are trying to address is whether they really have different temperature sensitivity. We believe the answer is ‘yes,’ but we have to show that."

Zheng also believes it is likely that the channels responsible for sensing cold coassemble in the same way. The cold- and heat-sensing subunits, however, do not seem to coassemble, he said.

The findings by Zheng and his colleagues promise to help solve the mystery of temperature sensitivity in animals once and for all. And, because the cells with these ion channels in their membranes are also the cells that sense pain, the basic knowledge they have provided may one day prove useful to scientists looking for novel remedies for pain.

"We have to re-examine everything from how people acclimate to hot climates to how they respond to spicy food based on the understanding that there are many more kinds of channels involved," Zheng said.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

Further reports about: FRET Ion Zheng coassemble heat-sensitive subunit

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>