Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover key to body's ability to detect subtle temperature changes

27.02.2007
Scientists have long known the molecular mechanisms behind most of the body’s sensing capabilities. Vision, for example, is made possible in part by rhodopsin, a pigment molecule that is extremely sensitive to light. It is involved in turning photons into electrical signals that can be decoded by the brain into visual information. But how the human body is able to sense a one-degree change in temperature has remained a mystery.

"For a long time, we didn’t know how temperature sensing was being carried out in animals," said Jie Zheng, assistant professor in the Department of Physiology and Membrane Biology at the UC Davis School of Medicine. Huge progress was made in the last decade, Zheng said, when scientists discovered four ion channels sensitive to heat and two cold-sensitive ones.

"But, it was still unclear how only six temperature-sensor channels could cover wide ranges of temperature and still discriminate subtle differences," Zheng said.

Using a novel method based on a technique first used by physicists, Zheng and his colleagues now have shown that the subunits of one channel can come together with subunits from another channel or coassemble in laboratory cell cultures to form new functioning channels. Assuming this process also happens in normal cells, it suggests a likely mechanism for the thermosensitivity seen in all animal cells, Zheng explained.

... more about:
»FRET »Ion »Zheng »coassemble »heat-sensitive »subunit

"We found that, by reassembling subunits we potentially have a lot more than six channel types responsible for the sensing of temperature," he said.

The current findings are featured on the cover of the March issue of the Journal of General Physiology and were published online today.

Ion channels are pore-forming proteins found in the membranes of cells. They have the ability to open and close, regulating the flow of charged ions and controlling the voltage gradient found between the inside and outside of every living cell.

In the current study, Zheng and his colleagues focused on a group of ion channels called transient receptor potential (TRP) channels. In all, there are more than 20 TRP channels. Zheng’s group studied four of the six channels that have been shown to be involved in sensing temperature.

Previous studies concluded that different thermosensitive TRP channel subunits did not coassemble, Zheng said. He realized, however, that there were some technical limitations to the previous work. So, he and his colleagues decided to use a technique they developed last year, called spectra FRET. Spectra FRET, or spectroscopy-based fluorescence resonance energy transfer, allows the researcher to observe interactions between different channel subunits under a microscope.

"This technique allows us to look at the channel subunit composition in real-time in live cells," Zheng said.

In the current experiments, cDNA coding for particular subunits is linked to cDNA coding for fluorescent proteins and then added to a culture of human embryonic kidney cells. The cells take up the DNA and then express the channel proteins, each now having a fluorescent protein tag. The researchers then observed the cells in the spectra FRET apparatus.

"Using spectra FRET, we were able to focus on just the signal from the plasma membrane," Zheng explained. "What we found was that the subunits of one kind of heat-sensitive channel coassembled with subunits of other heat-sensitive channels to form new channels. This means that instead of four heat-sensitive channels we have a potential of 256 heat-sensitive channels with potentially different temperature sensitivity ranges."

Zheng and his colleagues then confirmed their results using a technique called patch clamping that allowed them to record the electrical current flowing through individual open channels.

"Using these single-molecule recordings, we see many different channel types," Zheng said. The next question we are trying to address is whether they really have different temperature sensitivity. We believe the answer is ‘yes,’ but we have to show that."

Zheng also believes it is likely that the channels responsible for sensing cold coassemble in the same way. The cold- and heat-sensing subunits, however, do not seem to coassemble, he said.

The findings by Zheng and his colleagues promise to help solve the mystery of temperature sensitivity in animals once and for all. And, because the cells with these ion channels in their membranes are also the cells that sense pain, the basic knowledge they have provided may one day prove useful to scientists looking for novel remedies for pain.

"We have to re-examine everything from how people acclimate to hot climates to how they respond to spicy food based on the understanding that there are many more kinds of channels involved," Zheng said.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

Further reports about: FRET Ion Zheng coassemble heat-sensitive subunit

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>