Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug treatment improves learning in mice with Down syndrome symptoms

27.02.2007
A once-a-day, short-term treatment with a drug compound substantially improved learning and memory in mice with Down syndrome symptoms, say researchers at the Stanford University School of Medicine and Lucile Packard Children’s Hospital.

What’s more, the gains lasted for months after the treatment was discontinued. The researchers are now considering a clinical trial to test whether the compound has a similar effect in humans with Down syndrome.

"This treatment has remarkable potential," said Craig Garner, PhD, professor of psychiatry and behavioral sciences and co-director of Stanford’s Down Syndrome Research Center. "So many other drugs have been tried that had no effect all. Our findings clearly open a new avenue for considering how cognitive dysfunction in individuals with Down syndrome might be treated." The center was created by researchers at Stanford and Packard Children’s in 2003 to rapidly translate research discoveries into useful treatments for people with Down syndrome.

The research, which will be published Feb. 25 in the advance online edition of Nature Neuroscience, was conducted by Fabian Fernandez, a graduate student in Garner’s laboratory. Fernandez found that affected mice were significantly better able to identify novel objects and navigate a maze ­ tasks that simulate difficulties faced by children and adults with Down syndrome ­ after being fed 17 daily doses of milk containing a compound called pentylenetetrazole, or PTZ. Treated mice performed as well as their wild-type counterparts for up to two months after drug treatment was discontinued.

... more about:
»Fernandez »PTZ »compound »doses »excitation »wild-type

"Somehow the drug treatment creates a new capacity for learning," said Garner, who cautions that this new ability may decay over longer periods of time as older, drug-experienced neurons are replaced by younger cells.

The researchers believe that the key to the improvement lies in the fact that PTZ blocks the action of an inhibitory neurotransmitter called GABA. Normal brains maintain a precise ratio between neuronal excitation and inhibition that allows efficient learning. In contrast, it’s thought that Down syndrome patients have too much GABA-related inhibition, making it difficult to process information.

"In general, learning involves neuronal excitation in certain parts of the brain," said Garner. "For example, caffeine, which is a stimulant, can make us more attentive and aware, and enhance learning. Conversely, alcohol or sedatives impair our ability to learn."

But as any overenthusiastic college student can attest, too much caffeine can backfire. The same is true with high doses of PTZ, which can cause seizures. In fact, after some brief, inconclusive studies on cognition enhancement in elderly or mentally impaired people in the 1950s, PTZ has been primarily used for the study of epilepsy in animals. In 1982 the FDA withdrew approval for the use of PTZ in humans because no clear clinical benefit had been established. That is, until now.

"My idea was that it might be possible to harness this excitation effect, which at higher doses can be pathological, to benefit people with Down syndrome," said Fernandez.

More than 300,000 people nationwide have Down syndrome, which is caused by an extra copy of chromosome 21. It is the leading cause of mental retardation in the country, and it is also associated with childhood heart disease, leukemia and early onset Alzheimer’s disease. The researchers used a mouse model of Down syndrome for their study in which about 150 genes are triplicated. The mice exhibit many of the cognitive problems that afflict human Down syndrome patients.

Fernandez gave low daily doses of PTZ and investigated the animals’ responses to unfamiliar objects and a T-shaped maze. In the first example, he allowed the animals to explore two similarly sized, yet obviously different, objects for 15 minutes. Twenty-four hours later he exposed the same animals to one of the previously seen objects and a third, never-before-seen object. Although wild-type mice spent more time investigating the new object, untreated Down syndrome mice showed no preference for either object.

In the maze test, mice were habituated to the long arm of a T-shaped maze and then allowed to explore. Wild-type mice tended to investigate first one, then the other arm of the maze, while untreated Down syndrome mice were less methodical. However, the Down syndrome mice performed more like their wild-type counterparts on both tests after 17 days of PTZ treatment.

The researchers discovered two interesting things when testing the mice: daily doses were required for several days before any effect was detected, and, once established, the effect lasted for up to two months after the drug was withdrawn. In fact, the drug’s activity profile mirrored that of some well-known psychiatric medications.

"This suggests that it’s not just the removal of the excess inhibition that allows learning to occur, but that we’re instead strengthening synapses through some type of long-lasting neuronal adaptation," said Garner.

A key component of enduring neural change associated with memory is known as long-term potentiation. In general terms, once a threshold of activating signals has been achieved, a neuron becomes permanently more sensitive to excitation. Although long-term potentiation has been shown to be impaired or absent in the brains of Down syndrome mice, postdoctoral scholar Wade Morishita, PhD, who works in the Stanford laboratory of professor Rob Malenka, PhD, found that it approached normal levels after chronic PTZ treatment and remained comparable to that in wild-type mice for up to three months after PTZ was discontinued.

PTZ’s history of use in humans is an advantage when planning a clinical trial. However, the compound is not currently approved by the Food and Drug Administration for use in humans. Garner and Fernandez both strongly cautioned individuals against experimenting with the compound or others like it on their own. Appropriate doses and schedules have not yet been determined for humans, and the purity and safety of similar over-the-counter concoctions are questionable. Finally, they emphasized that PTZ treatment did not improve the learning capabilities of normal mice.

"We’re not in the business of cognitive enhancement," said Fernandez. "Basically, we have something that could be one part of the many different medical and environmental interventions that may allow kids with Down syndrome to live more normally."

Louis Bergeron | EurekAlert!
Further information:
http://www.lpch.org
http://www.stanford.edu

Further reports about: Fernandez PTZ compound doses excitation wild-type

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>