Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Caged DNA' can be freed for gen therapy

By combining DNA macromolecules with polymers containing iron, molecular ‘cages’ can be made: porous structures capable of carrying and delivering drugs or DNA-fragments.

By using small molecules as keys, the cage can be opened or part of the DNA can be freed. Scientists of the MESA+ Institute for Nanotechnology of the University of Twente in The Netherlands report about this in Angewandte Chemie International Edition, in their cover article on February 26, 2007.

DNA, being the carrier of genetic information in living creatures, can also be used in man-made technology, for instance in bioinformatics and DNA-computing. Scientists Yujie Ma and Mark Hempenius of the University of Twente managed to combine DNA macromolecules with synthetic polymers containing iron. The result is a novel way of creating porous structures, spherical ‘cages’ for example.

The walls of these cages are built step by step. The scientist therefore ingeniously use the different properties the two types of molecules have. DNA has a negative electrical charge while the polymer containing iron is positively charged. Another essential features of DNA is that the molecule is much more rigid than the polymer. The polymer wraps around the DNA and forms a very stable couple with it. What binds them together are electrostatic forces.

... more about:
»DNA »Gen »Iron »Polymer

‘Key molecules’

The spherical cage can transport medicine and deliver it locally. The cage can be opened by letting small molecules function as ‘keys’: they oxidize the iron and break the bond between the DNA and the polymer locally. In the same way, it is possible to free DNA-fragments from the cage, and apply them in gen therapy. Genes are then inserted into cells and tissue to treat inherited disease.

Macroporous materials like the new cages, with pore sizes larger than 50 nanometers, have a wide range of possible applications, but they are not easily fabricated until now. The DNA-polymer combination is an example of ‘self-assembly’ in which molecules organize themselves. It is a powerful new method to create the materials and an important step towards innovative applications.

The research, led by prof. Julius Vancso of the MESA+ Institute for Nanotechnology of the University of Twente and prof. Helmuth Möhwald of the Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm, Germany, is published in the February 26 issue of Angewandte Chemie International.

Wiebe van der Veen | alfa
Further information:

Further reports about: DNA Gen Iron Polymer

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>