Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Caged DNA' can be freed for gen therapy

27.02.2007
By combining DNA macromolecules with polymers containing iron, molecular ‘cages’ can be made: porous structures capable of carrying and delivering drugs or DNA-fragments.

By using small molecules as keys, the cage can be opened or part of the DNA can be freed. Scientists of the MESA+ Institute for Nanotechnology of the University of Twente in The Netherlands report about this in Angewandte Chemie International Edition, in their cover article on February 26, 2007.

DNA, being the carrier of genetic information in living creatures, can also be used in man-made technology, for instance in bioinformatics and DNA-computing. Scientists Yujie Ma and Mark Hempenius of the University of Twente managed to combine DNA macromolecules with synthetic polymers containing iron. The result is a novel way of creating porous structures, spherical ‘cages’ for example.

The walls of these cages are built step by step. The scientist therefore ingeniously use the different properties the two types of molecules have. DNA has a negative electrical charge while the polymer containing iron is positively charged. Another essential features of DNA is that the molecule is much more rigid than the polymer. The polymer wraps around the DNA and forms a very stable couple with it. What binds them together are electrostatic forces.

... more about:
»DNA »Gen »Iron »Polymer

‘Key molecules’

The spherical cage can transport medicine and deliver it locally. The cage can be opened by letting small molecules function as ‘keys’: they oxidize the iron and break the bond between the DNA and the polymer locally. In the same way, it is possible to free DNA-fragments from the cage, and apply them in gen therapy. Genes are then inserted into cells and tissue to treat inherited disease.

Macroporous materials like the new cages, with pore sizes larger than 50 nanometers, have a wide range of possible applications, but they are not easily fabricated until now. The DNA-polymer combination is an example of ‘self-assembly’ in which molecules organize themselves. It is a powerful new method to create the materials and an important step towards innovative applications.

The research, led by prof. Julius Vancso of the MESA+ Institute for Nanotechnology of the University of Twente and prof. Helmuth Möhwald of the Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm, Germany, is published in the February 26 issue of Angewandte Chemie International.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://www3.interscience.wiley.com/cgi-bin/fulltext/114095845/HTMLSTART

Further reports about: DNA Gen Iron Polymer

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>