Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic hearing loss may be reversible without gene therapy

26.02.2007
A large proportion of genetically caused deafness in humans may be reversible by compensating for a missing protein, based on discoveries in mice.

Emory University researchers have found that in mice, increasing the amount of the protein connexin26 in the ear's cochlea compensates for an absence of another protein, connexin30. The findings come 10 years after scientists first discovered that connexin26 mutations cause much of the deafness diagnosed at birth.

Xi (Erick) Lin, PhD, associate professor of otolaryngology and cell biology at Emory University School of Medicine, was lead author of the study, published recently in the Proceedings of the National Academy of Sciences (http://www.pnas.org/cgi/content/full/104/4/1337).

"There are millions of deaf people affected by mutations in this one gene, connexin26," he says. "Congenital hearing loss is one of the most common human genetic birth defects, and that is why in almost all the states universal newborn hearing screening is mandated by law [including Georgia]."

... more about:
»connexin26 »connexin30 »deafness »junction »therapy

In people without congenital hearing loss, connexin26 and connexin30 work together to form the cochlea's hybrid junction gaps, which facilitate intercellular communication. But when one of the proteins is missing, the hybrid junction gaps fail to work, and the cochlea's hair cells die off, leaving the body incapable of translating sounds into nerve impulses.

Even though scientists knew connexin26 was implicated in congenital deafness, they did not know precisely why. Working with Emory colleagues and scientists from the University of Bonn in Germany, Dr. Lin developed contrasting hypotheses.

"The deafness could have two very different explanations," he says. "Either hybrid gap junctions have special biophysical properties that cannot be replaced by gap junctions built with only one type of connexin, or mutations in one of the two connexins just cut the supply for making the gap junctions in half."

By adding extra connexin26 to mice that were missing connexin30, Dr. Lin and his team proved the latter hypothesis. With the additional connexin26, hearing sensitivity was restored and the expected hair cell death never occurred. Those positive findings led Dr. Lin to conclude, "The problem is simply caused by not having enough protein remaining in the ear of these mutant mice to assemble gap junctions."

Dr. Lin and his colleagues are now working to see if connexin-related deafness can be reversed in a mouse model, or if increasing connexin30 may help when connexin26 is absent.

As the research picks up momentum, these results--and future findings--may mean big changes for how congenital deafness is approached. Up to now, says Dr. Lin, scientists working on hearing loss had placed all their bets on gene therapy. That may no longer make sense. "Gene therapy, which has very few successful cases so far, may not be necessary," explains Dr. Lin.

Instead, Dr. Lin's findings indicate that a drug to boost connexin26 may be all that is needed. "Our work predicts that a drug should be sufficient to cure connexin30 deletion-caused deafness," he says.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu
http://www.pnas.org/cgi/content/full/104/4/1337

Further reports about: connexin26 connexin30 deafness junction therapy

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>