Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A first glimpse of the influenza replication machine

26.02.2007
The first 3D structure from a key influenza protein sheds light on transmission of flu between birds and humans

In 1918, 50 million people died during a worldwide influenza pandemic caused by mutation of a bird-specific strain of the influenza virus. Recently H5N1, another highly infectious avian strain has caused outbreaks of bird flu around the world. There is great concern that this virus might also mutate to allow human-to-human transmission and cause another catastrophic pandemic.

Specific mutations in a viral protein, the polymerase, contribute to the ability of the bird virus to jump the species barrier to humans. Researchers from the European Molecular Biology Laboratory (EMBL) in Grenoble and Heidelberg, the Institut de Biologie Structurale (IBS) and the Unit of Virus Host Cell Interactions (UVHCI)*, both in Grenoble, have now produced the first 3-dimensional image of part of this key protein. The study, which is published in the current issue of Nature Structural and Molecular Biology, investigates the structure and function of the protein and sheds light on how polymerase mutations contribute to transmission of avian flu to humans.

Upon infection the influenza virus starts multiplying in the cells of an infected host. The polymerase is crucial in this process because it copies the viral genome and directs the production of its proteins. Interfering with polymerase function would prevent the virus replicating, thereby reducing the spread of the virus and the severity of the infection.

“For many years scientists have tried to understand the flu polymerase and to look for weak points that could be targeted by drugs,” says Darren Hart, whose team participated in the research at EMBL Grenoble. “But no one could get enough protein to analyse its structure. We developed a way to use robots to screen tens of thousands of experimental conditions and discovered a piece of the influenza polymerase that we could work with. It is a small part of the entire protein, but it provides interesting insights into how the protein works and how mutations may affect host range.”

Together with scientists at the IBS they visualized the atomic structure of the protein and discovered a previously overlooked signal that labels it for transport to the human nucleus where the genetic material of the virus is replicated. Cell microscopy studies at EMBL Heidelberg revealed that the human nuclear transport protein, importin alpha, recognises this signal and shuttles the polymerase into the nucleus. To find out how the polymerase and importin interact, Stephen Cusack, head of EMBL Grenoble, and collaborators at the UVHCI, used the high intensity X-ray source of the European Synchrotron Radiation Facility to generate a high-resolution image of the two proteins interacting with each other. The image revealed that mutations known to play a role in the transmission of avian influenza virus to mammals were located within, or close to, this site of interaction. This suggests that mutations may affect the efficiency of nuclear transport and through this the ability of the virus to replicate in different species.

“Interfering with polymerase function could provide new ways to treat or prevent flu,” says Cusack, “but this will require a detailed picture of the rest of the polymerase. This is what we are aiming for in our new FLUPOL project. In a joint effort with other European laboratories, and with financial support by the European Commission, we will explore both structure and function of this key drug target and try to characterise other mutations implicated in bird-to-human transmission.”

* The Unit of Virus Host Cell Interactions is a collaboration of the Centre National de la Recherche Scientifique (CNRS), the Université Joseph-Fourier in Grenoble and EMBL.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/25feb07/index.html

Further reports about: Grenoble Influenza Polymerase Transmission function

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>