Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA helps prevent tumors

23.02.2007
A microRNA directly regulates a gene implicated in human cancers, researchers from Whitehead Institute and Massachusetts Institute of Technology report in the February 22nd online issue of Science.

MicroRNAs are tiny snippets of RNA that can repress activity of a gene by targeting the gene's messenger RNA (which copies DNA information and starts the process of protein production).

The first microRNA was discovered in 1993, in worms. It took seven years for the second one to be found, also in worms, but then the floodgates burst. Many microRNAs now have been found in diverse plants and animals, including hundreds in humans. Moreover, microRNAs found in mammals regulate over a third of the human genome, as shown in a 2005 study by the lab of Whitehead Member and Howard Hughes Medical Institute Investigator David Bartel and colleagues.

But given the wealth of microRNAs, and the ability of individual microRNAs to target hundreds of genes, researchers have struggled to show the biological impact of a particular microRNA on a particular target in mammals (although such connections have been shown in plants, worms and flies). Several groups have demonstrated that over-expression or under-expression of a microRNA can play a role in certain cancers, but have not clarified the genes responsible.

... more about:
»DNA »HMGA2 »MicroRNA »Protein »RNA »let-7 »regulate

Looking to find a promising target for an individual microRNA, Christine Mayr, a postdoctoral researcher in the Bartel lab, picked Hmga2, a gene that is defective in a wide range of tumors.

In these tumors, the protein-producing part of the Hmga2 gene is cut short and replaced with DNA from another chromosome. Biologists have mostly focused on the shortened protein as the possible reason that the cells with this DNA swap became tumors. But this DNA swap removes not only the gene's protein-producing regions but also those areas that don't code for protein. And these non-protein-producing regions contain the elements that microRNAs recognize.

It turns out that in the non-protein-producing region, Hmga2 has seven sites that are complementary to the let-7 microRNA, a microRNA expressed in the later stages of animal development. Mayr wondered whether loss of these let-7 binding sites, and therefore loss of regulation by let-7 of Hmga2, might cause over-expression of Hmga2 that in turn would result in tumor formation.

To find out, Mayr created a series of Hmga2 in which various numbers of let-7 sites were destroyed. She found clear evidence that when exposed to let-7, the fewer sites that were intact, the more protein was produced.

Next, she tested whether disrupting let-7's ability to repress Hmga2 would lead toward tumor creation. In a standard in vitro test of cancer-causing genes, colonies of mouse cells that expressed normal or shortened Hmga2 did not grow significantly, while cells in which Hmga2 contained disrupted let-7 sites did. In fact, the more that let-7 sites were damaged, the greater the number of colonies.

Mayr also worked with MIT assistant professor Michael Hemann to inject these cells in mice with a compromised immune system. The scientists found that the mice with cells that expressed the version of Hmga2 with the disrupted let-7 sites developed tumors.

Overall, the results highlight a new mechanism for cancer formation. Hmga2, and perhaps certain other genes that are normally regulated by microRNAs, can help give rise to tumors if a mutation in the gene disrupts the microRNA's ability to regulate it. In addition, the results show that the interaction of one microRNA with one of its target genes can produce a certain trait in mammals. This is important because scientists are only beginning to learn the functions of microRNAs in animals.

"Because hundreds of human genes appear to be regulated by the let-7 microRNA, we were afraid we wouldn't see any difference when we changed only one of these target genes," says David Bartel, who is also an MIT biology professor. "Seeing the difference encourages us to explore the biological importance of other examples of microRNA regulation."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: DNA HMGA2 MicroRNA Protein RNA let-7 regulate

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>