Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA helps prevent tumors

23.02.2007
A microRNA directly regulates a gene implicated in human cancers, researchers from Whitehead Institute and Massachusetts Institute of Technology report in the February 22nd online issue of Science.

MicroRNAs are tiny snippets of RNA that can repress activity of a gene by targeting the gene's messenger RNA (which copies DNA information and starts the process of protein production).

The first microRNA was discovered in 1993, in worms. It took seven years for the second one to be found, also in worms, but then the floodgates burst. Many microRNAs now have been found in diverse plants and animals, including hundreds in humans. Moreover, microRNAs found in mammals regulate over a third of the human genome, as shown in a 2005 study by the lab of Whitehead Member and Howard Hughes Medical Institute Investigator David Bartel and colleagues.

But given the wealth of microRNAs, and the ability of individual microRNAs to target hundreds of genes, researchers have struggled to show the biological impact of a particular microRNA on a particular target in mammals (although such connections have been shown in plants, worms and flies). Several groups have demonstrated that over-expression or under-expression of a microRNA can play a role in certain cancers, but have not clarified the genes responsible.

... more about:
»DNA »HMGA2 »MicroRNA »Protein »RNA »let-7 »regulate

Looking to find a promising target for an individual microRNA, Christine Mayr, a postdoctoral researcher in the Bartel lab, picked Hmga2, a gene that is defective in a wide range of tumors.

In these tumors, the protein-producing part of the Hmga2 gene is cut short and replaced with DNA from another chromosome. Biologists have mostly focused on the shortened protein as the possible reason that the cells with this DNA swap became tumors. But this DNA swap removes not only the gene's protein-producing regions but also those areas that don't code for protein. And these non-protein-producing regions contain the elements that microRNAs recognize.

It turns out that in the non-protein-producing region, Hmga2 has seven sites that are complementary to the let-7 microRNA, a microRNA expressed in the later stages of animal development. Mayr wondered whether loss of these let-7 binding sites, and therefore loss of regulation by let-7 of Hmga2, might cause over-expression of Hmga2 that in turn would result in tumor formation.

To find out, Mayr created a series of Hmga2 in which various numbers of let-7 sites were destroyed. She found clear evidence that when exposed to let-7, the fewer sites that were intact, the more protein was produced.

Next, she tested whether disrupting let-7's ability to repress Hmga2 would lead toward tumor creation. In a standard in vitro test of cancer-causing genes, colonies of mouse cells that expressed normal or shortened Hmga2 did not grow significantly, while cells in which Hmga2 contained disrupted let-7 sites did. In fact, the more that let-7 sites were damaged, the greater the number of colonies.

Mayr also worked with MIT assistant professor Michael Hemann to inject these cells in mice with a compromised immune system. The scientists found that the mice with cells that expressed the version of Hmga2 with the disrupted let-7 sites developed tumors.

Overall, the results highlight a new mechanism for cancer formation. Hmga2, and perhaps certain other genes that are normally regulated by microRNAs, can help give rise to tumors if a mutation in the gene disrupts the microRNA's ability to regulate it. In addition, the results show that the interaction of one microRNA with one of its target genes can produce a certain trait in mammals. This is important because scientists are only beginning to learn the functions of microRNAs in animals.

"Because hundreds of human genes appear to be regulated by the let-7 microRNA, we were afraid we wouldn't see any difference when we changed only one of these target genes," says David Bartel, who is also an MIT biology professor. "Seeing the difference encourages us to explore the biological importance of other examples of microRNA regulation."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: DNA HMGA2 MicroRNA Protein RNA let-7 regulate

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>