Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liposuctioned fat stem cells to repair bodies

23.02.2007
Expanding waistlines, unsightly bulges: people will gladly remove excess body fat to improve their looks. But unwanted fat also contains stem cells with the potential to repair defects and heal injuries in the body. A team led by Philippe Collas at the University of Oslo in Norway has identified certain chemical marks that allow him to predict which, among the hundreds of millions of stem cells in liposuctioned fat, are best at regenerating tissue.

Uncovering the nature and location of these molecular tags could allow scientists to pull off the ultimate trick of taking a patient’s own fat cells and using them for therapy, Collas told researchers gathered at the EuroSTELLS Workshop ‘Exploring Chromatin in Stem Cells’ held on January 23-24, in Montpellier, France.

“Fat tissue is an underappreciated source of stem cells,” Collas pointed out. Unlike other sources of adult stem cells, such as bone marrow, fat is abundant and there is no shortage of donors. “It’s wonderful, we have litres and litres of material from cosmetic surgery clinics and end up with bucketfuls of stem cells to work with,” he notes.

EuroSTELLS Project Leader Cesare Galli, from the University of Bologna, Italy has high hopes that transplanted fat stem cells will restore injured sports horses to their former glory. “Our aim is to regenerate the tendon structure that does not repair spontaneously,” says Galli. Once scar tissue is formed, it hinders the animal’s recovery. “If you intervene, with cell transplants, within one week, you can repair the lesion,” Galli notes.

... more about:
»Collas »HDL-cholesterol »epigenetic

Like horses, humans are also vulnerable to joint injuries, and rehabilitations are long and costly. Now experience with horses is paving the way to cell therapies for sport-related tendon injuries in humans. Therapies using bone marrow stem cells, similar to fat stem cells, have achieved some successes, but the focus is shifting to fat, since the tissue is easier to access and extract than the bone marrow.

That fat-based methods work is not surprising, perhaps, because adipose tissue is closely related to bone, cartilage, muscle and other connective tissue. But some say it is impossible to re-programme adult cells to become nerve or liver cells, for example, without using embryos. Adult stem cells, such as those from fat, are thought to have more limited potential.

Collas insists that the transformation is possible. The hurdle lies not with the genes but with a cell’s epigenetic status, the subtle chemical modifications of DNA and its surrounding histone proteins. Epigenetic marks contribute to switching genes on and off, and stem cells rely on them heavily as they divide and mature. The Oslo team has found that low rates of DNA methylation, for instance, boost the chances of transforming fat stem cells from one cell type into another. “Look at a cell’s epigenetic profile,” says Collas, “and you may be able to predict what that cell is likely to turn into.”

These epigenetic signatures have grabbed everyone’s attention, acknowledges Ernest Arenas, a EuroSTELLS researcher at the Karolinska Institute in Stockholm, Sweden. “Scientists in the stem cell field are starting to realise that for cell manipulations to succeed they need to pay attention to their epigenetic marks. Cells can’t be pushed along to become a different cell type unless they start out with the right set of [epigenetic] conditions.”

It is a complex area but one that is loaded with promise. “Everyone is talking about epigenetics,” says Collas. If he has his way, people may soon be visiting plastic surgeons not just for cosmetic reasons, but for therapy.

EuroSTELLS is the European Collaborative Research (EUROCORES) programme on “Development of a Stem Cell Tool Box” developed by the European Science Foundation.

Sofia Valleley | alfa
Further information:
http://www.esf.org

Further reports about: Collas HDL-cholesterol epigenetic

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>