Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liposuctioned fat stem cells to repair bodies

23.02.2007
Expanding waistlines, unsightly bulges: people will gladly remove excess body fat to improve their looks. But unwanted fat also contains stem cells with the potential to repair defects and heal injuries in the body. A team led by Philippe Collas at the University of Oslo in Norway has identified certain chemical marks that allow him to predict which, among the hundreds of millions of stem cells in liposuctioned fat, are best at regenerating tissue.

Uncovering the nature and location of these molecular tags could allow scientists to pull off the ultimate trick of taking a patient’s own fat cells and using them for therapy, Collas told researchers gathered at the EuroSTELLS Workshop ‘Exploring Chromatin in Stem Cells’ held on January 23-24, in Montpellier, France.

“Fat tissue is an underappreciated source of stem cells,” Collas pointed out. Unlike other sources of adult stem cells, such as bone marrow, fat is abundant and there is no shortage of donors. “It’s wonderful, we have litres and litres of material from cosmetic surgery clinics and end up with bucketfuls of stem cells to work with,” he notes.

EuroSTELLS Project Leader Cesare Galli, from the University of Bologna, Italy has high hopes that transplanted fat stem cells will restore injured sports horses to their former glory. “Our aim is to regenerate the tendon structure that does not repair spontaneously,” says Galli. Once scar tissue is formed, it hinders the animal’s recovery. “If you intervene, with cell transplants, within one week, you can repair the lesion,” Galli notes.

... more about:
»Collas »HDL-cholesterol »epigenetic

Like horses, humans are also vulnerable to joint injuries, and rehabilitations are long and costly. Now experience with horses is paving the way to cell therapies for sport-related tendon injuries in humans. Therapies using bone marrow stem cells, similar to fat stem cells, have achieved some successes, but the focus is shifting to fat, since the tissue is easier to access and extract than the bone marrow.

That fat-based methods work is not surprising, perhaps, because adipose tissue is closely related to bone, cartilage, muscle and other connective tissue. But some say it is impossible to re-programme adult cells to become nerve or liver cells, for example, without using embryos. Adult stem cells, such as those from fat, are thought to have more limited potential.

Collas insists that the transformation is possible. The hurdle lies not with the genes but with a cell’s epigenetic status, the subtle chemical modifications of DNA and its surrounding histone proteins. Epigenetic marks contribute to switching genes on and off, and stem cells rely on them heavily as they divide and mature. The Oslo team has found that low rates of DNA methylation, for instance, boost the chances of transforming fat stem cells from one cell type into another. “Look at a cell’s epigenetic profile,” says Collas, “and you may be able to predict what that cell is likely to turn into.”

These epigenetic signatures have grabbed everyone’s attention, acknowledges Ernest Arenas, a EuroSTELLS researcher at the Karolinska Institute in Stockholm, Sweden. “Scientists in the stem cell field are starting to realise that for cell manipulations to succeed they need to pay attention to their epigenetic marks. Cells can’t be pushed along to become a different cell type unless they start out with the right set of [epigenetic] conditions.”

It is a complex area but one that is loaded with promise. “Everyone is talking about epigenetics,” says Collas. If he has his way, people may soon be visiting plastic surgeons not just for cosmetic reasons, but for therapy.

EuroSTELLS is the European Collaborative Research (EUROCORES) programme on “Development of a Stem Cell Tool Box” developed by the European Science Foundation.

Sofia Valleley | alfa
Further information:
http://www.esf.org

Further reports about: Collas HDL-cholesterol epigenetic

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>