Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Liposuctioned fat stem cells to repair bodies

Expanding waistlines, unsightly bulges: people will gladly remove excess body fat to improve their looks. But unwanted fat also contains stem cells with the potential to repair defects and heal injuries in the body. A team led by Philippe Collas at the University of Oslo in Norway has identified certain chemical marks that allow him to predict which, among the hundreds of millions of stem cells in liposuctioned fat, are best at regenerating tissue.

Uncovering the nature and location of these molecular tags could allow scientists to pull off the ultimate trick of taking a patient’s own fat cells and using them for therapy, Collas told researchers gathered at the EuroSTELLS Workshop ‘Exploring Chromatin in Stem Cells’ held on January 23-24, in Montpellier, France.

“Fat tissue is an underappreciated source of stem cells,” Collas pointed out. Unlike other sources of adult stem cells, such as bone marrow, fat is abundant and there is no shortage of donors. “It’s wonderful, we have litres and litres of material from cosmetic surgery clinics and end up with bucketfuls of stem cells to work with,” he notes.

EuroSTELLS Project Leader Cesare Galli, from the University of Bologna, Italy has high hopes that transplanted fat stem cells will restore injured sports horses to their former glory. “Our aim is to regenerate the tendon structure that does not repair spontaneously,” says Galli. Once scar tissue is formed, it hinders the animal’s recovery. “If you intervene, with cell transplants, within one week, you can repair the lesion,” Galli notes.

... more about:
»Collas »HDL-cholesterol »epigenetic

Like horses, humans are also vulnerable to joint injuries, and rehabilitations are long and costly. Now experience with horses is paving the way to cell therapies for sport-related tendon injuries in humans. Therapies using bone marrow stem cells, similar to fat stem cells, have achieved some successes, but the focus is shifting to fat, since the tissue is easier to access and extract than the bone marrow.

That fat-based methods work is not surprising, perhaps, because adipose tissue is closely related to bone, cartilage, muscle and other connective tissue. But some say it is impossible to re-programme adult cells to become nerve or liver cells, for example, without using embryos. Adult stem cells, such as those from fat, are thought to have more limited potential.

Collas insists that the transformation is possible. The hurdle lies not with the genes but with a cell’s epigenetic status, the subtle chemical modifications of DNA and its surrounding histone proteins. Epigenetic marks contribute to switching genes on and off, and stem cells rely on them heavily as they divide and mature. The Oslo team has found that low rates of DNA methylation, for instance, boost the chances of transforming fat stem cells from one cell type into another. “Look at a cell’s epigenetic profile,” says Collas, “and you may be able to predict what that cell is likely to turn into.”

These epigenetic signatures have grabbed everyone’s attention, acknowledges Ernest Arenas, a EuroSTELLS researcher at the Karolinska Institute in Stockholm, Sweden. “Scientists in the stem cell field are starting to realise that for cell manipulations to succeed they need to pay attention to their epigenetic marks. Cells can’t be pushed along to become a different cell type unless they start out with the right set of [epigenetic] conditions.”

It is a complex area but one that is loaded with promise. “Everyone is talking about epigenetics,” says Collas. If he has his way, people may soon be visiting plastic surgeons not just for cosmetic reasons, but for therapy.

EuroSTELLS is the European Collaborative Research (EUROCORES) programme on “Development of a Stem Cell Tool Box” developed by the European Science Foundation.

Sofia Valleley | alfa
Further information:

Further reports about: Collas HDL-cholesterol epigenetic

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>