Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria in outer space exchange genes more often

23.02.2007
Studying of bacteria cosmic transformation is very important for space flight safety. It is necessary to know the methods to maintain cosmonauts’ immunity, what drugs should be offered to them, and what new biostable materials should be developed for spaceship compartments and equipment.

Researchers have investigated the peculiarities of microorganisms’ physiology and behavior in space on the “Mir” orbiting space station, and found that bacteria change significantly in extraterrestrial conditions. In 2005, experiments on board the “Photon 2” space vehicle launched batches of bacteria into space. Among them there were several cultures of bacilli, streptomycetes and Escherichia coli, selected not at random, but because they differ from each other in terms of their physiology, biochemistry and genetics, thus providing a more comprehensive view on bacteria behavior in general.

In orbit, living organisms face not only the lack of gravitation, but also cosmic radiation presence. Bacteria in space become more aggressive, and can “eat” spaceship components. This happens because microorganisms start producing enzymes unusual for them in terrestrial conditions, which destroy structural materials. It is not improbable that bacteria become aggressive not only towards materials but also provoking unexpected diseases in humans. Cosmonauts already experience immunodeficiency problems in flight, which makes them more vulnerable.

Observations on board the “Mir” and “Photon 2” proved that microorganisms change even during short-term flights of 12-14 days. For example, streptomycetes changed their appearance (size, shape and outline of the colonies’ surface). The in-depth analysis also revealed genetic modifications of microorganisms. The number of their mutations does not increase, but some genes are disrupted. Some genes that are “dormant” on the Earth, begin to work, which generate the enzymes which damage structural materials.

... more about:
»Change »genes »materials

Fortunately, when bacteria return to the Earth, they lose their aggressiveness, with changes that took place in orbit are reversible. Otherwise, similar problems could be expected on the Earth: destruction of materials and diseases in humans.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Change genes materials

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>