Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria in outer space exchange genes more often

23.02.2007
Studying of bacteria cosmic transformation is very important for space flight safety. It is necessary to know the methods to maintain cosmonauts’ immunity, what drugs should be offered to them, and what new biostable materials should be developed for spaceship compartments and equipment.

Researchers have investigated the peculiarities of microorganisms’ physiology and behavior in space on the “Mir” orbiting space station, and found that bacteria change significantly in extraterrestrial conditions. In 2005, experiments on board the “Photon 2” space vehicle launched batches of bacteria into space. Among them there were several cultures of bacilli, streptomycetes and Escherichia coli, selected not at random, but because they differ from each other in terms of their physiology, biochemistry and genetics, thus providing a more comprehensive view on bacteria behavior in general.

In orbit, living organisms face not only the lack of gravitation, but also cosmic radiation presence. Bacteria in space become more aggressive, and can “eat” spaceship components. This happens because microorganisms start producing enzymes unusual for them in terrestrial conditions, which destroy structural materials. It is not improbable that bacteria become aggressive not only towards materials but also provoking unexpected diseases in humans. Cosmonauts already experience immunodeficiency problems in flight, which makes them more vulnerable.

Observations on board the “Mir” and “Photon 2” proved that microorganisms change even during short-term flights of 12-14 days. For example, streptomycetes changed their appearance (size, shape and outline of the colonies’ surface). The in-depth analysis also revealed genetic modifications of microorganisms. The number of their mutations does not increase, but some genes are disrupted. Some genes that are “dormant” on the Earth, begin to work, which generate the enzymes which damage structural materials.

... more about:
»Change »genes »materials

Fortunately, when bacteria return to the Earth, they lose their aggressiveness, with changes that took place in orbit are reversible. Otherwise, similar problems could be expected on the Earth: destruction of materials and diseases in humans.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Change genes materials

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>