Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2,000 influenza virus genomes now completed and publicly accessible

22.02.2007
Information critical to developing treatments and vaccines

The Influenza Genome Sequencing Project, funded by the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), announced today that it has achieved a major milestone. The entire genetic blueprints of more than 2,000 human and avian influenza viruses taken from samples around the world have been completed and the sequence data made available in a public database.

"This information will help scientists understand how influenza viruses evolve and spread," says NIH Director Elias A. Zerhouni, M.D., "and it will aid in the development of new flu vaccines, therapies and diagnostics."

"Scientists around the world can use the sequence data to compare different strains of the virus, identify the genetic factors that determine their virulence, and look for new therapeutic, vaccine and diagnostic targets," says NIAID Director Anthony S. Fauci, M.D.

... more about:
»Genom »Influenza »Virus »flu

The Influenza Genome Sequencing Project, initiated in 2004, has been carried out at the NIAID-funded Microbial Sequencing Center managed by The Institute for Genomic Research (TIGR) of Rockville, Maryland. The project is currently directed by David Spiro, Ph.D., and Claire Fraser, Ph.D., at TIGR and Elodie Ghedin, Ph.D., at the University of Pittsburgh School of Medicine. Recently, growing sequencing capacity has enabled the production rate to increase to more than 200 viral genomes per month. Eclipsing today’s milestone of 2,000 genomes, the microbial sequencing center will continue to rapidly sequence more influenza strains and isolates and will make all the sequence data freely available to the scientific community and the public through GenBank, an Internet-accessible database of genetic sequences maintained by the National Center for Biotechnology Information (NCBI) at NIH’s National Library of Medicine, another major contributor to the project.

Seasonal influenza is a major public health concern in the United States, accounting for approximately 36,000 deaths and 200,000 hospitalizations each year. Globally, influenza results in an estimated 250,000 to half a million deaths annually. Seasonal flu shots are updated every year to target the latest strains in circulation. Developing such vaccines is challenging, however, because the influenza virus is prone to high mutation rates when it replicates, and these mutations can alter the virus enough that vaccines against one strain may not protect against another strain.

An even greater concern is the potential for an influenza pandemic caused by the emergence of a new, highly lethal virus strain that is easily transmitted from person to person. Influenza pandemics have occurred three times in the last century, the most lethal of which was the pandemic of 1918, which caused an estimated 40 to 50 million deaths worldwide.

"A few years ago, only limited genetic information on influenza viruses existed in the public domain, and much of the sequence data was incomplete," says Maria Y. Giovanni, Ph.D., who oversees the NIAID Microbial Sequencing Centers. "The Influenza Genome Sequencing Project has filled that gap by vastly increasing the amount of influenza sequence data and rapidly making it available to the entire scientific community. Subsequently, there has been a marked increase in the number of scientists worldwide depositing influenza genome sequence data into the public domain including scientists at St. Jude Children’s Research Hospital and the Centers for Disease Control and Prevention."

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.niaid.nih.gov

Further reports about: Genom Influenza Virus flu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>