Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein identified that regulates effectiveness of Taxol chemotherapy in breast cancer

22.02.2007
Cancer researchers at Georgetown University Medical Center have taken a step towards understanding how and why a widely used chemotherapy drug works in patients with breast cancer.

In laboratory studies, the researchers isolated a protein, caveolin-1, showing that in breast cancer cells this protein can enhance cell death in response to the use of Taxol, one of two taxane chemotherapy drugs used to treat advanced breast and ovarian cancer. But in order to work, they found the protein needs to be "switched on," or phosphorylated. The results were reported in the current (February 23) issue of the Journal of Biological Chemistry.

Their finding suggests it may eventually be possible to test individual breast cancer patients for the status of such molecular markers as caveolin-1 in their tumors to determine the efficacy-to-toxicity ratio for Taxol, said the study’s first author, postdoctoral fellow Ayesha Shajahan, Ph.D., of Lombardi Comprehensive Cancer Center at Georgetown.

"Because breast tumors are not all the same, it is important to know the cancer’s molecular makeup in order to increase the efficiency, and lower the toxicity, of chemotherapy drugs, and this work takes us some steps forward in this goal," she said. "It also offers insights into why some breast cancer cells can become resistant to therapeutic drugs."

... more about:
»Cancer »Caveolin-1 »Taxol »cell death »chemotherapy

Additionally, the study identifies caveolin-1 as a new molecular target for increasing the efficacy of taxanes, according to the study’s lead investigator, Robert Clarke, Ph.D., D.Sc., a Professor of Oncology and Physiology & Biophysics. "This is important because the taxanes are active drugs in breast cancer, so now that we know caveolin-1 is a new mechanism to explain how these drugs kill breast cancer cells, we can potentially take advantage of that fact to improve these agents."

The taxanes are Taxol (also known as paclitaxel) and Taxotere (docetaxel). Taxol was originally derived from the Pacific yew tree, and Taxotere is a semi-synthetic version of Taxol with slight chemical changes. These drugs stabilize a cell’s "microtubules," the road-like protein structures that send chemical signals to all parts of the cell, and which must be flexible if a cell is to divide. Taxanes lock these structures into place, not allowing them to change when the cell begins to divide - which is necessary for tumor growth. Research has also indicated that the drugs induce programmed cell death (apoptosis) in cancer cells by inactivating an "apoptosis stopping protein" called BCL2, thus stopping it from inhibiting cell death.

Caveolin-1 is a protein that is found in most cells under normal conditions and it is involved in an array of cellular events that ranges from vesicle trafficking to cell migration. It is, therefore, as a key regulator of multiple events within the cell.

In cancer, the expression level of caveolin-1 can vary depending on cell type. However, the precise role of caveolin-1 in cancer has been controversial: whether it acts as a suppressor or facilitator of tumor formation depends on the cell type. In human breast cancer, caveolin-1 has been known to act as a tumor suppressor since caveolin-1 expression is down-regulated during the primary stages of breast cancer. More recent studies indicate that that caveolin-1 expression is increased in more aggressive types of breast cancer.

Under the mentorship of Clarke, Shajahan sought to determine factors that regulate expression and function of caveolin-1 in the breast. In this study, the researchers show that in their breast cancer cell model that phosphorylated caveolin-1 increased cell death by activating other key regulators vital to both breast cancer progression and cell death, including BCL2, the same protein that Taxol works on; p21, which controls cell cycle progression; and the tumor suppressor p53.

If caveolin-1 isn’t phosphorylated, breast cancer cells appear to be resistant to Taxol treatment, the researchers conclude. "Thus, this study opens an area of investigation in our lab that will concentrate on understanding how this multi-tasking protein can serve as a marker for chemotherapeutic drug efficacy," Shajahan said.

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

Further reports about: Cancer Caveolin-1 Taxol cell death chemotherapy

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>